DOI QR코드

DOI QR Code

Single Cell Oil-Recent Trends in Microbial Production and Utilization

미생물에 의한 단세포유지의 생산과 이용

  • Kim, Yong-Ro (Department of Biosystems Engineering, Seoul National University) ;
  • Yoon, Suk Hoo (Department of Food Science and Biotechnology, Woosuk University)
  • 김용노 (서울대학교 농업생명과학대학 바이오시스템소재학부) ;
  • 윤석후 (우석대학교 식품과학대학 식품생명공학과)
  • Received : 2015.11.12
  • Accepted : 2015.11.30
  • Published : 2015.12.31

Abstract

With the shortage of edible fats and oils and depletion of fossil fuels in many countries, microbial lipids is emerging as one of the most promising sources of fats and oils in the global market. Oleaginous microorganisms, also called single cell oils (SCOs), can accumulate lipids more than 25% in the cell volume. Triacylglycerols are the major storage lipids. SCOs offer several advantages for lipid production as follows: SCOs have short life span which would shorten production time, cultivation conditions are not affected by climate and place; the production process is easy to control. There are a number of oleaginous yeasts, molds, and microalgae. Furthermore, the lipid productivity of SCOs can be enhanced through strain improvement and the optimization of cultivation conditions. The new strains developed using recent advanced biotechnical methods showed greatly improved oleaginicity. Further, hydrolysates of lignocellulosic materials can be used as carbon sources for economic production of SCO.

단세포유지 생산에 이용되는 미생물은 효모, 곰팡이, 미세조류 등이다. 단세포유지의 생산 효율은 배지의 조성을 조절하여 영양공급을 최적화하거나, 배양 조건을 조절하거나, 최신의 생명공학기술을 활용하여 균주를 개량함으로써 증가시킬 수 있다. 단세포유지를 상업적으로 대량 생산하기 위해서는 값이 싼 탄소원을 확보하는 것이 무엇보다 중요하므로 지구 상에 풍부한 섬유질 자원을 활용하는 방법이 주목을 끌고 있다. 미세조류는 대기 중의 탄산가스를 탄소원으로 이용하므로 탄소원의 비용이 들지 않는 는 장점이 있다. 단세포유지 생산 미생물의 유전자를 조작하거나 대사공학기술을 이용하는 방법은 균주의 생산성을 획기적으로 높이기도 한다. 단세포유지는 그 동안 식품, 사료, 의약품 등으로 사용되어 왔으나 최근에는 바이오디젤(biodiesel)의 원료로도 사용될 수 있어 또 다른 관심을 끌고 있다.

Keywords

References

  1. Woodbine M. Microbial fat: Microorganisms as potential fat producers. Prog. Ind. M. 1: 181-245 (1959)
  2. Ratledge C, Cohen Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol. 20: 155-160 (2008) https://doi.org/10.1002/lite.200800044
  3. Ratledge C. Single cell oils for the 21st century. 2nd ed. pp. 3-26. In: Single cell oils-microbial and algal oils. Cohen Z, Ratledge C (eds). AOCS Publishing, Champaign, IL, USA (2010)
  4. Choi SY, Ryu DDY, Rhee JS. Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol. Bioeng. 24: 1165-1172 (1982) https://doi.org/10.1002/bit.260240513
  5. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395-408 (2013) https://doi.org/10.1016/j.plipres.2013.05.002
  6. Yoon SH, Rhim JW, Choi SY, Ryu DDY, Rhee JS. Effect of carbon and nitrogen sources on lipid production of Rhodotorula gracilis. J. Ferment. Technol. 60: 243-246 (1982)
  7. Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem. 31: 355-361 (1996) https://doi.org/10.1016/0032-9592(95)00077-1
  8. Li YH, Liu B, Zhao ZB, Bai FW. Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese J. Biotechnol. 22: 650-656 (2006) https://doi.org/10.1016/S1872-2075(06)60050-2
  9. Yoon SH, Rhee JS. Lipid from yeast fermentation: Effects of cultural conditions on lipid production and its characteristics of Rhodotorula gracilis. J. Am. Oil Chem. Soc. 60: 1281-1286 (1983) https://doi.org/10.1007/BF02702101
  10. Yoon SH, Rhee JA. Quantitative physiology of Rhodotorula glutinis for microbial lipid production. Process Biochem. 18: 2-4 (1983)
  11. Liang XA, Dong WB, Miao XJ, Dai CJ. Production technology and influencing factors of microorganism grease. Food Res. Dev. 27: 46-47 (2006)
  12. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S. Single cell oils (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass Bioenerg. 68: 135-150 (2014) https://doi.org/10.1016/j.biombioe.2014.06.016
  13. Kurokawa H. Oleaginous yeast convert glycerol to triacylglycerol. INFORM 26: 618-619 (2015) https://doi.org/10.21748/inform.11.2015.618
  14. Shen JJ, Li FC, Yang QL, Feng DW, Qin S, Zhao ZB. Fermentation of Spartina anglica acid hydrolysate by Trichosporon cutaneum for microbial lipid production. Mar. Sci. 3: 38-41 (2007)
  15. Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87: 1-14 (1999) https://doi.org/10.1016/S1389-1723(99)80001-2
  16. Cheirsilp B. Kitcha S. Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: Fed-batch and repeated-batch fermentations. Ind. Crop. Prod. 66: 73-80 (2015) https://doi.org/10.1016/j.indcrop.2014.12.035
  17. Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech. 27: 631-635 (2000) https://doi.org/10.1016/S0141-0229(00)00266-0
  18. Chen GQ, Jiang Y, Chen F. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem. 109: 88-94 (2008) https://doi.org/10.1016/j.foodchem.2007.12.022
  19. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores. Technol. 101: 1406-1413 (2010) https://doi.org/10.1016/j.biortech.2009.09.038
  20. Gouda MK, Omer SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechn. 24: 1703-1711 (2008) https://doi.org/10.1007/s11274-008-9664-z
  21. Kalscheuer R, Stolting T, Steinbuchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529-2536 (2006) https://doi.org/10.1099/mic.0.29028-0
  22. Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Tech. 113: 1031-1051 (2011) https://doi.org/10.1002/ejlt.201100014
  23. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG. Biodiesel from algae: Challenges and prospects. Curr. Opin. Biotech. 21: 277-286 (2010) https://doi.org/10.1016/j.copbio.2010.03.005
  24. Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48: 375-387 (2009) https://doi.org/10.1016/j.plipres.2009.08.005
  25. Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog. Lipid Res. 47:157-171 (2008) https://doi.org/10.1016/j.plipres.2008.01.001
  26. Sitepu IR, Sestric R, Ignatia L, Levin D, Bruce German J, Gillies LA, Almada LAG, Boundy-Mills KL. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technol. 144: 360-369 (2013) https://doi.org/10.1016/j.biortech.2013.06.047
  27. Meesters PAEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biot. 45: 575-579 (1996) https://doi.org/10.1007/s002530050731
  28. Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H. Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26: 553-566 (2009) https://doi.org/10.1002/yea.1706
  29. Pedersen TA. Lipid formation in Cryptococcus terricolus. I. Nitrogen nutrition and lipid formation. Acta Chem. Scand. 16: 359-373 (1962) https://doi.org/10.3891/acta.chem.scand.16-0359
  30. Connor MR, Atsumi S. Synthetic biology guides biofuel production. BioMed. Res. Int. 2010: 1-9 (2010)
  31. Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, Kohlwein SD. The emergence of lipid droplets in yeast: Current status and experimental approaches. Curr. Genet. 59: 231-242 (2013) https://doi.org/10.1007/s00294-013-0407-9
  32. Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum grown in single-stage continuous culture. Appl. Microbiol. Biot. 40: 483-488 (1993)
  33. Ykema A, Verbree EC, Kater MM, Smit H. Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in wheypermeate. Appl. Microbiol. Biot. 29: 211-218 (1988)
  34. Laoteng K, Certik M, Cheevadhanark S. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem. Pap. 65: 97-103 (2011)
  35. Cohen Z. Heimer YM. Production of polyunsaturated fatty acids (EPA, ARA and GLA) by the microalgae Porphyridium and Spirulina. pp. 243-273. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  36. Pritchett WC, Taylor WG, Carroll DM. Chlorophyll removal during earth bleaching of soybean oil. J. Am. Oil Chem. Soc. 24: 225-227 (1947) https://doi.org/10.1007/BF02593199
  37. Ratledge, C. Microbial lipids: Commercial realities or academic curiosities. pp. 1-14. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  38. Nakabara T, Yokochi T, Kamisaka Y, Suzuki O. Gamma-linolenic acid from genus Mortierellu. pp. 61-97. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  39. Botba A, Strauss T, Kock JLF, Pohl CH, Coetzee DJ. Carbon source utilization and $\gamma$-linolenic acid production by Mucoralean fungi. Syst. Appl. Microbiol. 20: 165-170 (1997) https://doi.org/10.1016/S0723-2020(97)80062-8
  40. Fukuda H. Morikawa H. Enhancement of $\gamma$-linolenic acid production by Mucor ambiguus with nonionic surfactants. Appl. Microbiol. Biot. 27: 15-20 (1987)
  41. Roux MP, Kock JLF, Botha A, du Preez JC, Wells GV, Botes PJ. Mucor: A source of cocoa butter and gamma-linolenic acid. World J. Microbiol. Biotechn. 10: 417-422 (1994) https://doi.org/10.1007/BF00144464
  42. Kristofikova L, Rosenberg M, Vlnova A, Sajbidor J, Certik M. Selection of Rhizopus strains for L(+)-lactic acid and $\gamma$-linolenic acid production. Folia Microbiol. 36: 451-455 (1991) https://doi.org/10.1007/BF02884065
  43. Emelyanova EV. Gamma-linolenic acid production by Cunning-hamella japonica in solid state fermentation. Process Biochem. 31: 431-434 (1996) https://doi.org/10.1016/0032-9592(95)00097-6
  44. Amano N, Shinmen Y, Akimoto K, Kawashima H, Amachi T. Chemotaxonomic significance of fatty acid composition in the genus Mortierella (Zygomycetes, Mortierellaceae). Mycotaxon 45: 257-265 (1992)
  45. Eroshin VK, Dedyukhina EG, Chistyakova TI, Zhelifonova VP, Botast RJ. Studies on arachidonic acid production by Mortierella fungi: A microbiological method for selecting arachidonic acid producers. Microbiology 65: 26-31 (1996)
  46. Sajbidor J, Kozelouhova D, Certik M. Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp.. Folia Microbiol. 37: 404-406 (1992) https://doi.org/10.1007/BF02899897
  47. Chen HC, Chang CC, Chen CX. Optimization of arachidonic acid production by Mortierella alpina Wuji-H4 isolate. J. Am. Oil Chem. Soc. 74: 569-578 (1997) https://doi.org/10.1007/s11746-997-0182-1
  48. Totani N, Watanabe A, Oba K. An improved method of arachidonic acid production by Mortierella alpina. Yukagaku 36: 328-331 (1987)
  49. Stredanska S, Slugen D, Stredansky M, Grego J. Arachidonic acid production by Mortierella alpina grown on solid substrates. World J. Microbiol. Biotechn. 9: 511-513 (1993) https://doi.org/10.1007/BF00386285
  50. Kim SK, Chung GH, Han JJ, Cho SW, Yoon SH. Effect of extraction methods on the extraction yield of total lipid and arachidonic acid from single cell oil, Mortierella sp. Korean J. Food Sci. Technol. 47: 281-285 (2015) https://doi.org/10.9721/KJFST.2015.47.3.281
  51. Kim SK, Chung GH, Han JJ, Cho SW, Yoon SH. Bleaching of lipids extracted from single cell oil produced by Mortierella sp.. Korean J. Food Sci. Technol. 47: 405-408 (2015) https://doi.org/10.9721/KJFST.2015.47.3.405
  52. Shimizu S, Akimoto K, Kawashima H, Shinmen Y, Yamada H. Production of dihomo-$\gamma$-linolenic acid by Mortierella alpina 1S-4. J. Am. Oil Chem. Soc. 66: 237-241 (1989) https://doi.org/10.1007/BF02546067
  53. Shimizu S, Akimoto K, Sugano M, Yamada H. Studies on desaturase inhibitors of polyunsaturated fatty acid biosynthesis. pp. 37-41. In: Essential fatty acids and eicosanoids. Sinclair A, Gibson R (eds). AOCS Press, Champaign, IL, USA (1993).
  54. Jareonkitmongkol S, Sakuradani E, Shimizu S. A novel ${\Delta}5$-desaturase defective mutant of Mortierella alpina lS-4 and its dihomo-$\gamma$-linolenic acid productivity. Appl. Environ. Microb. 59: 4300-4304 (1993)
  55. Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H. Production of eicosapentaenoic acid by Mortierellu fungi. J. Am. Oil Chem. Soc. 65: 1455-1459 (1988) https://doi.org/10.1007/BF02898307
  56. Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H. Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina lS-4 at low temperature. Appl. Microbial. Biotechn. 32: l-4 (1989)
  57. Bajpai PK, Bajpai P, Ward OP. Optimisation of culture conditions for production of eicosapentaenoic acid by Mortierella elongata NRRL 5513. J. Ind. Microbiol. 9: 11-18 (1992) https://doi.org/10.1007/BF01576363
  58. Kotula KL, Yi M. Optimization of conditions for the production of eicosapentaenoic acid by Mortierella. J. Food Quality 17: 101-114 (1994) https://doi.org/10.1111/j.1745-4557.1994.tb00136.x
  59. Jareonkitmongkol S, Shimizu S, Yamada H. Production of an eicosapentaenoic acid-containing oil by a ${\Delta}l2$ desaturase-defective mutant of Mortierella alpina lS-4. J. Am. Oil Chem. Soc. 70: 119-123 (1993) https://doi.org/10.1007/BF02542612
  60. Shirasaka N, Shimizu S. 'Production of eicosapentaenoic acid by Saprolegnia sp. 28YTF-1. J. Am. Oil Chem. Soc. 72: 1545-1549 (1995) https://doi.org/10.1007/BF02577852
  61. Weete JD, Gandhi SR. Enhancement of Czo polyunsaturated fatty acid production in Pythium ultimum. pp. 98-117. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  62. O'Brien DJ, Kurantz MJ, Kwoczak R. Production of eicosapentaenoic acid by the filamentous fungus Pythium irregulare. Appl. Microbial. Biotechn. 40: 211-214 (1993)
  63. Boswell KDB, Glaude R, Prima B, Kyle DJ. SCO production by fermentative microalgae. pp. 274-286. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  64. Yazawa K, Watanabe K., Ishikawa C, Kondo K, Kimura S. Production of eicosapentaenoic acid from marine bacteria. pp. 29-51. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)
  65. Kendrick A, Ratledge C. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27: 15-20 (1992) https://doi.org/10.1007/BF02537052
  66. Singh A, Ward OP. Microbial production of docosahexaenoic acid (DHA, C22:6). Vol 45. pp. 271-312. In: Advances in Applied Microbiology. Neidleman SL, Laskin AI (eds). Academic press, Waltham, MA, USA(1997) https://doi.org/10.1016/S0065-2164(08)70266-1
  67. Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J. Am. Oil Chem. Soc. 74: 1431-1434 (1997) https://doi.org/10.1007/s11746-997-0249-z
  68. Kawashima H, Kamada N, Sakuradani E, Jareonkitmongkol S, Akimoto K, Shimizu S. Production of 8,11,14,17-cis-eicosatetraenoic acid by ${\Delta}5 $desaturase-defective mutants of an arachidonic acid-producing fungus, Mortierella alpina. J. Am. Oil Chem. Soc. 74: 455-459 (1997) https://doi.org/10.1007/s11746-997-0106-0
  69. Rattray J. Yeast. pp. 555-697. In: Microbial lipids. Ratledge C, Wilkinson S (eds). Academic press, Waltham, MA, USA (1988)
  70. Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J. Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technol. 153: 230-235 (2014) https://doi.org/10.1016/j.biortech.2013.11.086
  71. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol. Adv. 32: 1336-1360 (2014) https://doi.org/10.1016/j.biotechadv.2014.08.003
  72. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechn. 90: 1219-1227 (2011) https://doi.org/10.1007/s00253-011-3200-z
  73. Chi Z, Zheng Y, Jiang A, Chen S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl. Biochem. Biotech. 165: 442-453 (2011) https://doi.org/10.1007/s12010-011-9263-6
  74. Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresource Technol. 111: 398-403 (2012) https://doi.org/10.1016/j.biortech.2012.02.004
  75. Leiva-Candia DE, Pinzi S, Redel-Macias MD, Koutinas A,Webb C, Dorado MP. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123: 33-42 (2014) https://doi.org/10.1016/j.fuel.2014.01.054
  76. Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart. J. Nat. Sci. 44: 436-445 (2010)
  77. van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480 (2012) https://doi.org/10.1016/j.biotechadv.2012.03.002
  78. Girio F, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol: A review. Bioresource Technol. 101: 4775-4800 (2010) https://doi.org/10.1016/j.biortech.2010.01.088
  79. Husain SS, Hardin MM. Influence of carbohydrate and nitrogen sources upon lipid production by certain yeasts. J. Food Sci. 17: 60-66 (1952) https://doi.org/10.1111/j.1365-2621.1952.tb16739.x
  80. Evans CT, Ratledge C. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J. Gen. Microbiol. 130: 1693-1704 (1984)
  81. Turcotte G, Kosaric N. Lipid biosynthesis in oleaginous yeasts. Bioprocess Eng. 40: 73-92 (2005)
  82. Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microb. 74: 7779-7789 (2008) https://doi.org/10.1128/AEM.01412-08
  83. Rattray JB, Scheibeci A, Kidby D. Lipids of yeasts. Bacteriol. Rev. 39: 197-231 (1975)
  84. Miller JJ, Webb NS. Isolation of yeasts from soil with the aid of acid, rose bengal, and oxgall. Soil Sci. 77: 197-204 (1954) https://doi.org/10.1097/00010694-195403000-00003
  85. Kessell RHJ. Fatty acids of Rhodotorula gracilis: Fat production in submerged culture and the particular effect of pH value. J. Appl. Bacteriol. 31: 220-231 (1968) https://doi.org/10.1111/j.1365-2672.1968.tb00361.x
  86. Hunter K, Rose AH. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. BBA-Lipid. Lipid Met. 260: 639-653 (1972) https://doi.org/10.1016/0005-2760(72)90013-6
  87. Kates M, Paradis M. Phospholipid desaturation in Candida lipolytica as a function of temperature and growth. Can. J. Biochem. Cell B. 51: 184-197 (1973) https://doi.org/10.1139/o73-024
  88. Pan JG, Rhee JS. Biomass yields and energetic yields of oleaginous yeasts in batch culture. Biotechnol. Bioeng. 28: 112-114 (1986) https://doi.org/10.1002/bit.260280117
  89. Hiroaki Y, Hironori M, Takeshi K, Shoichi S. Mass production of lipids by Lipomyces starkeyi in microcomputer-aided fed-batch culture. J. Ferment. Technol. 61: 275-280 (1983)
  90. Ratledge C, Streekstra H, Cohen Z, Fichtali J. Downstream processing, extraction, and purification of single cell oils. 2nd ed. pp. 179-195. In: Single cell oils - microbial and algal oils. Cohen Z, Ratledge C (eds). AOCS Publishing, Champaign, IL, USA (2010)
  91. Wang JJ, Zhang BR, Chen SL. Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem. 46: 1436-1441 (2011) https://doi.org/10.1016/j.procbio.2011.03.011
  92. Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol. Biotechnol. 42: 327-332 (2009) https://doi.org/10.1007/s12033-009-9155-y
  93. Liang Y, Cui Y, Trushenski J, Blackburn JW. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresource Technol. 101: 7581-7586 (2010) https://doi.org/10.1016/j.biortech.2010.04.061
  94. Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J. Biol. Chem. 277: 39035-39044 (2002) https://doi.org/10.1074/jbc.M207753200
  95. Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur. J. Biochem. 267: 85-96 (2000) https://doi.org/10.1046/j.1432-1327.2000.00961.x
  96. Lin H, Castro NM, Bennett GN, San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechn. 71: 870-874 (2006) https://doi.org/10.1007/s00253-005-0230-4
  97. Yoon SH, Park JS, Rhee JS. Production of NADPH for lipogenesis in oleaginous yeast Rhodotorula glutinis. Kor. J. Appl. Micobiol. Bioeng. 12: 247-251 (1984)
  98. Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Mo X, Zhang Y. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J. Ind. Microbiol. Biot. 38: 919-925 (2011) https://doi.org/10.1007/s10295-010-0861-z
  99. Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technol. 99: 2419-2428 (2008) https://doi.org/10.1016/j.biortech.2007.05.005
  100. Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K. Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. J. Biosci. Bioeng. 95: 435-440 (2003) https://doi.org/10.1016/S1389-1723(03)80041-5
  101. Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J. 275: 2765-2778 (2008) https://doi.org/10.1111/j.1742-4658.2008.06417.x
  102. Cao Z, Gao H, Liu M, Jiao P. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol. J. 1: 68-74 (2006) https://doi.org/10.1002/biot.200500008
  103. Coleman RA, Lee DP. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134-176 (2004) https://doi.org/10.1016/S0163-7827(03)00051-1
  104. Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107: 258-268 (2010) https://doi.org/10.1002/bit.22807
  105. Dulermo T, Nicaud JM. Involvement of the G3P shuttle and beta-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab. Eng. 13: 482-491 (2011) https://doi.org/10.1016/j.ymben.2011.05.002
  106. Verwoert IGS, van der Linden KH, Walsh MC, Nijkamp HJJ, Stuitje AR. Modification of Brassica napus seed oil by expression of the Escherichia coli fabH gene, encoding 3-ketoacyl-acyl carrier protein synthase III. Plant Mol. Biol. 27: 875-886 (1995) https://doi.org/10.1007/BF00037016
  107. Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 113: 75-81 (1997) https://doi.org/10.1104/pp.113.1.75
  108. Tai M, Stephanopoulos G. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15: 1-9 (2013) https://doi.org/10.1016/j.ymben.2012.08.007
  109. Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS. Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol. 27: 277-282 (2010) https://doi.org/10.1016/j.nbt.2010.02.006