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Abstract—Pull-in voltage model of nano-electro-
mechanical system with graphene is investigated for 
the device optimization. In the pull in voltage model, 
thickness of graphene layer is assumed to be uniform 
in vertical and lateral direction. Finite element 
analysis simulation has verified the feasibility of the 
suggested model. From the suggested model, pull-in 
voltage change with graphene thickness and 
cantilever length can be estimated. Maximum induced 
stress and graphene thickness have a reciprocal 
relationship.    
 
Index Terms—Nano electro mechanical systems 
(NEMS), graphene, modeling of graphene   

I. INTRODUCTION 

Nano electro mechanical systems (NEMS) are 
considered as promising switching devices for a variety 
of electronic applications due to the zero leakage current 
and abrupt switching properties [1-6]. 

However metal based NEMS technologies have some 
problems such as static friction and abrasion that cause a 
failure of the electrical contact [7-9]. Graphene is 
theoretically suited for NEMS and has excellent 
mechanical properties, including high stiffness and low 
mass [10-13]. Graphene based NEMS overcome the 

static friction and help solving reliability problem of 
micro-electronic devices.  

The integration research of graphene NEMS for high 
density circuits needs selective graphene growth methods. 
To solve the integration problem, graphene NEMs have 
been fabricated by using chemical vapor deposition 
(CVD) on nickel cantilever [14]. The precise control of 
graphene material on NEMs can be realized by the 
selective growth of graphene on the pre-fabricated metal 
beam. 

Since the manufacturing of NEMS requires high cost 
and difficult processes, design optimization is necessary 
to reduce cost and trial-and-error time [15]. Pull-in 
voltage can be treated as the most important parameter 
for NEMS operation because it determines operation 
voltage and power dissipation. Prediction of pull in 
voltage with device dimensions can offer a guide line for 
NEMS design. In this paper, we proposed theoretical 
models for pull in voltage of NEMS, which is based on 
graphene with Ni cantilever. 

II. SIMULATION STRUCTURE 

In this work, NEMS simulations are performed with 
finite element analysis simulation. In the simulation work, 
cantilever is assumed to have rectangular parallelepiped 
beam structure as shown in Fig. 1(a). Fig. 1(b) shows 
dimensional parameters at the side view of cantilever. 
One of the cantilever’s surface is fixed and another 
surface moves down to electrode. Fig. 1(c) shows the 
front side structure parameters of the cantilever for pull-
in voltage modeling.  

Lbeam, Tbeam and Wbeam are the cantilever length, 
thickness and width respectively. G is the distance 
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between the cantilever and electrode. EGraphene is the 
Young’s modulus of graphene and the value of this 
parameter is cited from the previous work [16]. 
TGraphene_TOP and WGraphene_Top represent the graphene 
upper region thickness and width respectively. Ei is the 
Young’s modulus of nickel. TNi and WNi are the nickel 
region thickness and width.  

Since two different types of material properties are tied 
together, mathematical method for equivalent material is 
necessary to get the pull-in voltage. The moment inertia 
of two materials is merged into single structure for 
unified equation. It should be modified as shown in Fig. 
1(c). The modified width of Ni is determined by the ratio 
of Young’s modulus of Ni to graphene as shown in Eq. 
(1) [17-19].  
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To determine the moment of inertia at the center of the 

equivalent structure (Peq), h1 and h2 are defined in an 
equivalent material structure through the Eq. (2) [19]. 
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TTop and TBottom are top region and bottom region 

thicknesses respectively as shown in Fig. 1(c). 
Yi is the distance from Ptop to the bottom of the 

cantilever and Ai is the cross-sectional area. 
Since the direction of motion of the two materials is 

the same, the moment of inertia of the equivalent 
structure can be determined by the moments of inertia, I1 
and I2. Equation for moments of inertia is as follow Eq. 
(3). 

 
 1 2' = +I I I             (3)  

 
I1is the moment of inertia of the top region of 

cantilever beam and I2 is the moment of inertia of the 
bottom region of cantilever beam. 

The moment of inertia of a rectangular structure is 
expressed by Eq. (4) [19]. 
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The moment of inertia, I1 andI2 are calculated as   
 

 2 2
1 1 1 1 2 2 2 2,= + = +c cI I A d I I A d        (5) 

 
I1c and I2c mean the moments of inertia of the original 

structures and A1 and A2 are the cross-sectional areas of 
the equivalent structure. d1 and d2 are distances between 
equivalent structure center and the original structure 
center at top region and bottom region respectively as 
shown in Fig. 1(c) [19]. 

From Eqs. (2-5) the total moment inertia of equivalent 
structure can be expressed as Eq. (6). 

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 1. (a) Vertical and lateral schematic diagram of NEMS 
with grapheme, (b) The equivalent structure of NEMS with 
graphene and dimensional parameters. 
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The spring constant of the cantilever with a 

rectangular cross section is expressed in Eq. (7) [20]. 
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The spring constant can be expressed using the 

moment of inertia by Eq. (8) [20]. 
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By using the moment of inertia of the equivalent 

structure from Eq. (6), the modified spring constant is 
expressed as Eq. (9). 
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The pull-in voltage of the cantilever is calculated by 

using Eq. (10) [21]. 
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Here ε0 is the vacuum permittivity and G is the 

distance between the cantilever and the electrode. 
The final equation for pull-in voltage for cantilever is 

expressed as Eq. (11). 
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IV. RESULTS AND DISCUSSIONS 

Fig. 2 shows comparison results between simulation 
and model when they have variation in graphene width 
and thickness. The width and thickness variation of 
graphene shows quadratic relationship with pull-in 
voltage. Even though there is some quantitative 
differences between the model and simulation results, the 
tendency of the pull-in voltages are matched with each 
other as shown in Fig. 2. Effect of graphene deposition 
thickness is shown in Fig. 2. From Eq. (11), pull-in 
voltage slightly increases with graphene thickness. 
Similar is the result in Fig. 2, difference between model 
and simulation results increase with graphene thickness. 
Because the thick graphene can cause high pull up 
voltage operation, our model can be applied to NEMS 
modeling with thin graphene.  

The difference between simulation and model result is 
caused by limitation of estimation method [22]. The 
analytical model assumes a flat cantilever and 
electrostatic force is assumed to be uniformly distributed 
over it. Due to uniform electrostatic force distribution, 
the pull in voltage difference is inversely proportional to 
the beam length as shown in Fig. 3. Additional research 
is needed to reduce the quantitative difference between 
simulation and modeling result. 

Although the aggressive scaling down of beam length 
is hard to be achieved in real fabrication. The difference 
between model and simulation results is tolerable in real 
fabrication. In the optimization of NEMS design, 

 

 

Fig. 2. Pull in voltage comparison between suggested model 
and FEA simulation result in accordance with graphene 
thickness variation. Cantilever length is fixed at 10 nm. 
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graphene thickness should be carefully considered. Even 
though thin graphene NEMS has small pull in voltage but 
thin graphene can also causes high stress in NEMS. Fig. 
4 shows maximum stress of NEMS with graphene 
thickness variation. Every NEMS has 200 nm length and 
1 Pa force is induced to flexible surface of NEMS. As 
shown in Fig. 4, maximum stress on NEMS decreases 
with graphene thickness. From this result, thickness of 
NEMS should be optimized with careful consideration of 
pull-in voltage and reliability. 

V. CONCLUSIONS 

In this paper, analytical modeling of NEMS pull-in 
voltage has been proposed for the accurate evaluation of 

NEMS operation. In particular, the modeling is 
performed to NEMS device which uses a Ni cantilever as 
a catalyst of graphene layer. The suggested pull-in 
voltage model for the NEMS provides a good accuracy 
when NEMS has long length and thin graphene. Pull in 
voltage modeling indicates that the graphene thickness 
has a significant role in determining the pull-in voltage 
and reliability of NEMS. The graphene thickness should 
be carefully considered for NEMs design optimization. 
As graphene thickness increases, pull-in voltage 
increases. However increase of graphene thickness 
reduces maximum stress intensity in NEMS cantilever. 
Our model and simulation results can offer insights of 
graphene NEMS device optimization.    
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