DOI QR코드

DOI QR Code

Pharmacophore-Based Comparative Molecular Similarity Indices Analysis of CRTh2 Antagonists

  • Babu, Sathya (Department of Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University)
  • Received : 2015.11.28
  • Accepted : 2015.12.25
  • Published : 2015.12.30

Abstract

Chemoattractant Receptor Homologous molecule expressed on Th2 cells (CRTh2) is a chemoattractant receptor with seven transmembrane helices targeted for inflammatory diseases such as asthma and allergic rhinitis. In this study, pharmacophore based Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on the series of 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids derivatives. Initially, GASP module was used for generation of pharmacophore models using five highly active compounds from the dataset. Among the generated pharmacophores, the best pharmacophore model was selected based on fitness score and was used as template for the alignment of compounds which was used for CoMSIA analysis. The best predictions were obtained utilizing steric, hydrophobic and H-bond acceptor parameters showing a $q^2$=0.559 and $r^2$=0.730. 15 test set compounds was used to investigate the predictive ability of the CoMSIA model. Contour maps suggested that presence of bulky substituents and H-bond acceptor atoms at $5^{th}$ position of benzene ring will increase the activity of the compounds. The results obtained from this study will be useful to design more potent CRTh2 antagonists.

Keywords

References

  1. J. Pothier, M. A. Riederer, O. Peter, X. Leroy, A. Valdenaire, C. Gnerre, and H. Fretz, "Novel 2-(2- (benzylthio)-1H-benzo[d]imidazol-1-yl) acetic acids: Discovery and hit-to-lead evolution of a selective CRTh2 receptor antagonist chemotype", Bioorg. Med. Chem. Lett., Vol. 22, pp. 4660-4664, 2012. https://doi.org/10.1016/j.bmcl.2012.05.087
  2. R. Pettipher and M. Whittaker, "Update on the development of antagonists of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). From lead optimization to clinical proof-of-concept in asthma and allergic rhinitis", J. Med. Chem., Vol. 55, pp. 2915-2931, 2012. https://doi.org/10.1021/jm2013997
  3. D. Bonafoux, A. Abibi, B. Bettencourt, A. Burchat, A. Ericsson, C. M. Harris, T. Kebede, M. Morytko, M. McPherson, G. Wallace, and X. Wu, "Thienopyrrole acetic acids as antagonists of the CRTH2 receptor", Bioorg. Med. Chem. Lett., Vol. 21, pp. 1861-1864, 2011. https://doi.org/10.1016/j.bmcl.2011.01.008
  4. T. Ulven and E. Kostenis, "Novel CRTH2 antagonists: A review of patents from 2006 to 2009", Expert Opin. Ther. Pat., Vol. 20, pp. 1505- 1530, 2010. https://doi.org/10.1517/13543776.2010.525506
  5. A. N. Hata, T. P. Lybrand, and R. M. Breyer, "Identification of determinants of ligand binding affinity and selectivity in the prostaglandin D2 receptor CRTH2", J. Biol. Chem., Vol. 280, pp. 32442- 32451, 2005. https://doi.org/10.1074/jbc.M502563200
  6. T. N. Birkinshaw S. J. Teague, C. Beech, R. V. Bonnert, S. Hill, A. Patel, S. Reakes, H. Sanganee, I. G. Dougall, T. T. Phillips, S. Salter, J. Schmidt, E. C. Arrowsmith, J. J. Carrillo, F. M. Bell, S. W. Paine, and R. Weaver, "Discovery of potent CRTh2 (DP2) receptor antagonists", Bioorg. Med. Chem. Lett., Vol. 16, pp. 4287-4290, 2006. https://doi.org/10.1016/j.bmcl.2006.05.062
  7. R. Pettipher, "The roles of the prostaglandin D2 receptors DP1 and CRTH2 in promoting allergic responses", Brit. J. Pharmacol., Vol. 153, pp. S191- S199, 2008.
  8. S. Crosignani, P. Page, M. Missotten, V. Colovray, C. Cleva, J.-F. Arrighi, J. Atherall, J. Macritchie, T. Martin, Y. Humbert, M. Gaudet, D. Pupowicz, M. Maio, P.-A. Pittet, L. Golzio, C. Giachetti, C. Rocha, G. Bernardinelli, Y. Filinchuk, A. Scheer, M. K. Schwarz, and A. Chollet, "Discovery of a new class of potent, selective, and orally bioavailable CRTH2 (DP2) receptor antagonists for the treatment of allergic inflammatory diseases", J. Med. Chem., Vol. 51, pp. 2227-2243, 2008. https://doi.org/10.1021/jm701383e
  9. A. K. Jain, N. Manocha, V. Ravichandran, V. K. Mourya, and R. K. Agrawal, "Three-dimensional Qsar study of 2,4-disubstituted-phenoxy acetic acid derivatives as a Crth2 receptor antagonist: using the K-nearest neighbor method", Dig. J. Nanomater. Bios., Vol. 3, pp. 147-158, 2008.
  10. G. Jones, P. Willett, and R. C. Glen, "A genetic algorithm for flexible molecular overlay and pharmacophore elucidation", J. Comput. Aid. Mol. Des., Vol. 9, pp. 532-549, 1995. https://doi.org/10.1007/BF00124324
  11. SYBYL Software, Version X2.0., 2006, Tripos Associates Inc, St. Louis, USA.
  12. G. Klebe, U. Abraham, and T. Mietzner, "Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity", J. Med. Chem., Vol. 37, pp. 4130-4146, 1994. https://doi.org/10.1021/jm00050a010
  13. S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, "The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses", SIAM Journal on Scientific and Statistical Computing, Vol. 5, pp. 735-743, 1984. https://doi.org/10.1137/0905052
  14. S. Wold, "Cross-validatory estimation of the number of components in factor and principal component model", Technometrics, Vol.20, pp. 397- 405, 1978. https://doi.org/10.1080/00401706.1978.10489693
  15. B. Sathya and T. Madhavan, "Comparative molecular field analysis of caspase-3 inhibitors", J. Choun Natural Sci., Vol. 7, pp. 166-172, 2014. https://doi.org/10.13160/ricns.2014.7.3.166
  16. P. Singh and T. Madhavan, "Histone deactylase inhibitors as novel target for cancer, diabetes, and inflammation", J. Chosun Natural Sci., Vol. 6, pp. 57-63, 2013. https://doi.org/10.13160/ricns.2013.6.1.057
  17. S. Kulkarni and T. Madhavan, "Application of docking methods: An effective in silico tool for drug design", J. Chosun Natural Sci., Vol. 6, pp. 100-103, 2013. https://doi.org/10.13160/ricns.2013.6.2.100
  18. M. Shalini and T. Madhavan, "Homology modeling of CCR 4: novel therapeutic target and preferential maker for Th2 Cells", J. Chosun Natural Sci., Vol. 7, pp. 234-240, 2014. https://doi.org/10.13160/ricns.2014.7.4.234
  19. B. Sathya and T. Madhavan, "Comparative molecular similarity indices analysis of caspase-3 inhibitors", J. Chosun Natural Sci., Vol. 7, pp. 227- 233, 2014. https://doi.org/10.13160/ricns.2014.7.4.227