DOI QR코드

DOI QR Code

Docking Study of Human Galactokinase Inhibitors

  • Babu, Sathya (Department of Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University)
  • Received : 2015.11.28
  • Accepted : 2015.12.25
  • Published : 2015.12.30

Abstract

Galactosemia is a potentially lethal disorder caused by the deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT) within the Leloir pathway. Galactokinase (GALK) is the enzyme in Leloir pathway which converts ${\alpha}$-D galactose to galactose 1-phosphate. The elevated level of galactose-1-phosphate, the product of GALK plays a major role in Galactosemia. Therefore the inhibition of GALK is a novel therapy for this disorder. Hence in the present study, we performed molecular docking of twenty inhibitors with different activity against galactokinase into the active site of galactokinase enzyme. The binding mode of these inhibitors was obtained using Surflex dock program interfaced in Sybyl-X2.0. The residues such as SER141, TYR109, ARG105, ARG228, TYR106, GLY346, GLY136, ASP86, ASP186 and SER142 found to interact with inhibitors.

Keywords

References

  1. R. Caputto, L. F. Leloir, R. E. Trucco, C. E. Cardini, and A. C. Paladini, "Enzymatic transformations of galactose into glucose derivatives", J. Biol. Chem., Vol. 179, pp. 497-498, 1949.
  2. H. M. Holden, I. Rayment, and J. B. Thoden, "Structure and function of enzymes of the leloir pathway for galactose metabolism", J. Biol. Chem., Vol. 278, 43885-43888, 2003. https://doi.org/10.1074/jbc.R300025200
  3. L. F Leloir, "The enzymatic transformation of uridine diphosphate glucose into a galactose derivative", Arch. Biochem. Biophys., Vol. 33, pp. 186-190, 1951. https://doi.org/10.1016/0003-9861(51)90096-3
  4. M. Tang, K. Wierenga, L. J. Elsas, and K. Lai, "Molecular and biochemical characterization of human galactokinase and its small molecule inhibitors", Chem-Biol Interact., Vol. 188, pp. 376- 385, 2010. https://doi.org/10.1016/j.cbi.2010.07.025
  5. C. F. Megarity, M. Huang, C. Warnock, and D. J. Timson, "The role of the active site residues in human galactokinase: implications for the mechanisms of GHMP kinases", Bioorg. Chem., Vol. 39, pp. 120-126, 2011. https://doi.org/10.1016/j.bioorg.2011.03.001
  6. K. J. Isselbacher, E. P. Anderson, K. Kurahashi, and H. M. Kalckar, "Congenital galactosemia, a single enzymatic block in galactose metabolism", Science, Vol. 123, pp. 635-636, 1956. https://doi.org/10.1126/science.123.3198.635
  7. K. J. Wierenga, K. Lai, P. Buchwald, and M. Tang, "High-throughput screening for human galactokinase inhibitors", J. Biomol. Screen, Vol. 13, pp. 415-423, 2008. https://doi.org/10.1177/1087057108318331
  8. L. Liu, M. Tang, M. J. Walsh, K. R. Brimacombe, R. Pragani, C. Tanega, J. M. Rohde, H. L. Baker, E. Fernandez, B. Blackman, J. M. Bougie, W. H. Leister, D. S. Auld, M. Shen, K. Lai, and M. B. Boxer, "Structure activity relationships of human galactokinase inhibitors", Bioorg. Med. Chem. Lett., Vol. 25, pp. 721-727, 2015. https://doi.org/10.1016/j.bmcl.2014.11.061
  9. SYBYL Software , Tripos Associates Inc, St. Louis, USA, 2006.
  10. A. N. Jain, "Scoring functions for protein-ligand docking", Curr. Protein Pept Sc., Vol. 7, pp. 407- 420, 2006. https://doi.org/10.2174/138920306778559395
  11. A. N. Jain, "Scoring non-covalent protein-ligand interactions: a continuous differentiable function tuned to compute binding affinities", J. Comput. Aid. Mol. Des., Vol. 10, pp. 427-440, 1996. https://doi.org/10.1007/BF00124474
  12. M. K. Paul and A. K. Mukhopadhyay, "Tyrosine kinase-role and significance in cancer", Int. J. Med. Sci., Vol. 1, pp. 101-115, 2004.
  13. P. Singh and T. Madhavan, "Histone deactylase inhibitors as novel target for cancer, diabetes, and inflammation", J. Chosun Natural Sci., Vol. 6, pp. 57-63, 2013. https://doi.org/10.13160/ricns.2013.6.1.057
  14. S. Kulkarni and T. Madhavan, "Application of docking methods: an effective in silico tool for drug design", J. Chosun Natural Sci., Vol. 6, pp. 100-103, 2013. https://doi.org/10.13160/ricns.2013.6.2.100
  15. B. Sathya and T. Madhavan, "Comparative molecular field analysis of caspase-3 inhibitors", J. Choun Natural Sci., Vol. 7, pp. 166-172, 2014. https://doi.org/10.13160/ricns.2014.7.3.166
  16. B. Sathya and T. Madhavan, "Comparative molecular similarity indices analysis of caspase-3 inhibitors", J. Chosun Natural Sci., Vol. 7, pp. 227- 233, 2014. https://doi.org/10.13160/ricns.2014.7.4.227
  17. M. Shalini and T. Madhavan, "Homology modeling of CCR 4: novel therapeutic target and preferential maker for Th2 cells", J. Chosun Natural Sci., Vol. 7, pp. 234-240, 2014. https://doi.org/10.13160/ricns.2014.7.4.234