DOI QR코드

DOI QR Code

Synthesis of N,N-Dimethylacetamide from Carbonylation of Trimethylamine by Rhodium(I) Complex Under Anhydrous Condition

  • Hong, Jang-Hwan (Department of Nanopolymer Material Engineering, Pai Chai University)
  • Received : 2015.10.12
  • Accepted : 2015.11.05
  • Published : 2015.12.30

Abstract

Rhodium(I)-complex of $[Rh(CO)_2I_2{^-}]$ catalyzed carbonylation of anhydrous-trimethylamine in the presence of methyl iodide to give DMAC (N,N-dimethylacetamide) in no solvent. The catalyst had been reused 20 times, the analyses and distillation of collected products showed that the yields of DMAC, MAA (N-methylacetamide), and DMF (N,N-dimethylformamide) were 82.3%, 12.6%, and 4.4%. The conversion rate of trimethylamine was 99 % and the selectivity of DMAC was 82.3% with TON (Turnover Number) of 700. Stepwise procedure of inner-sphere reductive elimination for the formation of DMAC was suggested instead of acyl iodide intermediate.

Keywords

References

  1. V. R. Pattabiraman and J. W. Bode, "Rethinking amide bond synthesis", Nature, Vol. 480, pp. 471- 479, 2011. https://doi.org/10.1038/nature10702
  2. C. L. Allen and J. M. J. Williams, "Metal-catalyzed approaches to amide bond formation", Chem. Soc. Rev., Vol. 40, pp. 3405-3415, 2011. https://doi.org/10.1039/c0cs00196a
  3. Sud. Roy, Suj. Roy, and G. W. Gribble, "Metal-catalyzed amidation", Tetrahedron, Vol. 68, pp. 9867- 9923, 2012. https://doi.org/10.1016/j.tet.2012.08.065
  4. T. Kobayashi and M. Tanaka, "Cleavage of C-N bonds of tertiary amines and carbonylation of organic halides with palladium complexes as catalysts leading to formation of tertiary amides", J. Organomet. Chem., Vol. 231, pp. C12-14, 1982. https://doi.org/10.1016/S0022-328X(00)89234-7
  5. M. M. Taqui Khan, S. B. Halligudi, S. Shukla, and S. H. R. Abdi, "Kinetic study of carbonylation of N-butylamine using homogeneous water soluble $Ru^{II}$-EDTA-CO catalyst", Journal of Molecular Catalysis, Vol. 51, pp. 129-135, 1989. https://doi.org/10.1016/0304-5102(89)80093-8
  6. I. Ryu, K. Nagahara, N. Kambe, N. Sonoda, S. Kreimerman, and M. Komatsu, "Metal catalyst-free by design. The synthesis of amides from alkyl iodides, carbon monoxide and amines by a hybrid radical/ionic reaction", Chem. Commun., Vol. 18, pp. 1953-1954, 1998.
  7. J. R. Martinelli, T. P. Clark, D. A.Watson, R. H. Munday, and S. L. Buchwald, "Palladium-catalyzed aminocarbonylation of aryl chlorides at atmospheric pressure: The dual role of sodium phenoxide", Angew. Chem. Int. Ed., Vol. 46, pp. 8460-8463, 2007. https://doi.org/10.1002/anie.200702943
  8. A. Mansour, T. Kehat, and M. Portnoy, "Dendritic effects in catalysis by Pd complexes of bidentate phosphines on a dendronized support: Heck vs. carbonylation reactions", Org. Biomol. Chem., Vol. 6, pp. 3382-3387, 2008. https://doi.org/10.1039/b809715a
  9. Y. Zhu, L. Chuanzhao, A. O. Biying, M. Sudarmadji, A. Chen, D. T. Tuan, and A. M. Seayad, "Stabilized well-dispersed Pd(0) nanoparticles for aminocarbonylation of aryl halides", Dalton T., Vol. 40, pp. 9320-9325, 2011. https://doi.org/10.1039/c1dt10927h
  10. T. T. Dang, Y. Zhu, S. C. Ghosh, A. Chen, C.L.L. Chai, and A.M. Seayad, "Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5", Chem. Commun., Vol. 48, pp. 1805-1807, 2012. https://doi.org/10.1039/c2cc16808a
  11. F. Tinnis, O. Verho, K. P. J. Gustafson, C.-W. Tai, J.-E. Bäckvall, and H. Adolfsson, "Efficient palladium-catalyzed aminocarbonylation of aryl iodides using palladium nanoparticles dispersed on siliceous mesocellular foam", Chem-Eur. J., Vol. 20, pp. 5885-5889, 2014. https://doi.org/10.1002/chem.201402029
  12. T. Fang, X.-H. Gao, R.-Y. Tang, X.-G. Zhang, and C.-L. Deng, "A novel Pd-catalyzed N-dealkylative carbonylation of tertiary amines for the preparation of amides", Chem. Commun., Vol. 50, pp. 14775- 14777, 2014. https://doi.org/10.1039/C4CC07378A
  13. B. Dutta, S. Omar, S. Natour, and R. Abu-Reziq, "Palladium nanoparticles immobilized on magnetic nanoparticles: An efficient semi-heterogeneous catalyst for carbonylation of aryl bromides", Catal. Commun., Vol. 61, pp. 31-36, 2015. https://doi.org/10.1016/j.catcom.2014.12.001
  14. B. Urban, M. Papp, D. Sranko, and R. Skoda- Foldes, "Phosphine-free atmospheric carbonylation of aryl iodides with aniline derivatives in the presence of a reusable silica-supported palladium", J. Mol. Catal. A-Chem., Vol. 397, pp. 150-157, 2015. https://doi.org/10.1016/j.molcata.2014.11.008
  15. C. L. Berre, P. Serp, P. Kalck, and G. P. Torrence, "Acetic acid", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH Verlag GmbH, pp. 1-34, 2014.
  16. D. Stoye, "Solvents in Ullmann's Encyclopedia of Industrial Chemistry", Weinheim: Wiley-VCH Verlag GmbH, 2000.
  17. OECD SIDS Initial Assessment Report for 13th SIAM, Bern, Switzerland, 6-9 November 2001.
  18. H. Friederich and K. Sepp, "A process for the preparation of carboxamides", DE Patent 948056, 1956.
  19. K. Nozaki, "Dimethylacetamide production", US Patent 3407231, 1968.
  20. H. E. Bellis, "Dimethylacetamide from carbonylation of trimethylamine", EP Patent 0185823, 1984.
  21. T. Kazuo, "Dimethylacetamide production", JP Patent 3275656, 1991.
  22. J. R. Zhan, J. B. Guo, and X. L. Jiang, "Method for preparing N,N-dimethylacetamide", CN Patent 101003491, 2007.
  23. P. Roose, "Process for preparing secondary amides by carbonylation of a corresponding tertiary amine", WO Patent 2010057874 A1, 2010.
  24. H. Mei, W. Han, J. Hu, S. Xiao, Y. Lei, R. Zhang, W. Mo, and G. Li, "Palladium-catalyzed unstrained C($sp^3$)-N bond activation: The synthesis of N,Ndimethylacetamide by carbonylation of trimethylamine", Appl. Organomet. Chem., Vol. 27, pp. 177- 183, 2013. https://doi.org/10.1002/aoc.2964
  25. Y. Lei, R. Zhang, W. Han, H. Mei, Y. Gu, B. Xiao, and G. Li, "Promotion effects of Lewis acid/ $(CH_3)_4NI$ on $[Co(CO)_4]^-$ -catalyzed C-N bond activation in the carbonylation of trimethylamine", Catal. Commun., Vol. 38, pp. 45-49, 2013. https://doi.org/10.1016/j.catcom.2013.04.017
  26. Y. Lei, R. Zhang, and G. Li, "Cobalt-catalyzed unstrained C-N bond activation: the synthesis of tertiary amides by carbonylation of tertiary amines", International Journal of Chemical, Environmental & Biological Sciences, Vol. 1, pp. 762-764, 2013.
  27. Y. Lei, R. Zhang, Q. Wu, H. Mei, B. Xio, and G. Li, "Carbonylation of quaternary ammonium salts to tertiary amide using $NaCo(CO)_4$ catalyst", J. Mol. Catal. A-Chem., Vol. 381, pp. 120-125, 2014. https://doi.org/10.1016/j.molcata.2013.10.014
  28. Y. Lei, R. Zhang, L. Wu, Q. Wu, H. Mei, and G. Li, "Palladium-catalyzed carbonylation of quaternary ammonium halides to tertiary amides", Appl. Organomet. Chem., Vol. 28, pp. 310-314, 2014. https://doi.org/10.1002/aoc.3126
  29. A. Fulford, C. E. Hickey, and P. M. Maitlis, "Factors influencing the oxidative addition of iodomethane to $[Rh(CO)_2I_2]^-$, the key step in methanol and methylacetate carbonylation",Factors influencing the oxidative addition of iodomethane to $[Rh(CO)_2I_2]^-$, the key step in methanol and methyl acetate carbonylation", J. Organomet. Chem., Vol. 398, pp. 311-323, 1990. https://doi.org/10.1016/0022-328X(90)85517-3
  30. A. Fulford, N. A. Bailey, H. Adams, and P. M. Maitlis, "The synthesis, properties, and crystal structure of $Bu_4N$ [$Rh(CO)_2(OAc)_2$], and the exchange of acetate, chloride, and iodide in $Bu_4N[Rh(CO)_2(X)_2]$", J. Organomet. Chem., Vol. 417, pp. 139-147, 1991. https://doi.org/10.1016/0022-328X(91)80168-J
  31. M. Christophe and G. Suss-Fink, "Ligand effects in the rhodium-catalyzed carbonylation of methanol", Coordin. Chem. Rev., Vol. 243, pp. 125-142, 2003. https://doi.org/10.1016/S0010-8545(03)00051-1
  32. N. Yoneda, S. Kusano, M. Yasui, P. Pujado, and S. Wilcher, "Recent advances in processes and catalysts for the production of acetic acid", Appl. Catal. A-Gen., Vol. 221, pp. 253-265, 2001. https://doi.org/10.1016/S0926-860X(01)00800-6
  33. B. L. Smith, G. P. Torrence, M. A. Murphy, and A. Aguilo, "The rhodium-catalyzed methanol carbonylation to acetic acid at low water concentrations: The effect of iodide and acetate on catalyst activity and stability", Journal of Molecular Catalysis, Vol. 39, pp. 115-136, 1987. https://doi.org/10.1016/0304-5102(87)80053-6
  34. D. Forster, "Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes", Adv. Organomet. Chem., Vol. 17, pp. 255-267, 1979.
  35. D. Forster, "On the mechanism of a rhodiumcomplex- catalyzed carbonylation of methanol to acetic acid", J. Am. Chem. Soc., Vol. 98, pp. 846- 848, 1976. https://doi.org/10.1021/ja00419a041
  36. G. W. Adamson, J. J. Daly, and D. Forster, "Reaction of iodocarbonylrhodium ions with methyl iodide. Structure of the rhodium acetyl complex: $[Me_3PhN^+]_2[Rh_2I_6(MeCO)_2(CO)_2]^2$", J. Organomet. Chem., Vol. 71, pp. C17-C19, 1974. https://doi.org/10.1016/S0022-328X(00)93156-5
  37. A. Haynes, B. E. Mann, G. E. Morris, and P. M. Maitlis, "Mechanistic studies on rhodium-catalyzed carbonylation reactions: spectroscopic detection and reactivity of a key intermediate, $[MeRh(CO)_2I_3]^-$", J. Am. Chem. Soc., Vol. 115, pp. 4093-4100, 1993. https://doi.org/10.1021/ja00063a030
  38. C. M. Frech, and D. J. Milstein, "Direct observation of reductive elimination of methyl iodide from a rhodium(III) pincer complex: the importance of sterics", J. Am. Chem. Soc., Vol. 128, pp. 12434-12435, 2006. https://doi.org/10.1021/ja064945d
  39. L. Gonsalvi, J. A. Gaunt, H. Adams, A. Castro, G. J. Sunley, and A. Haynes, "Quantifying steric effects of a-diimine ligands. Oxidative addition of MeI to rhodium(I) and migratory insertion in rhodium(III) complexes", Organometallics, Vol. 22, pp. 1047-1054, 2003. https://doi.org/10.1021/om020777w
  40. R. J. Adcock, D. H. Nguyen, S. Ladeira, C. L. Berre, P. Serp, and P. Kalck, "Reactivity of rhodium(I) complexes bearing nitrogen-containing ligands toward $CH_3I$: synthesis and full characterization of neutral cis-$[RhX(CO)_2(L)]$ and acetyl $[RhI({\mu}-I)(COMe)(CO)(L)]_2$ complexes", Inorg. Chem., Vol. 51, pp. 8670-8685, 2012. https://doi.org/10.1021/ic2019988
  41. A. Haynes, P. M. Maitlis, R. Quyoum, C. Pulling, H. Adams, S. E. Spey, and R. W. Strange, "Structure and reactivity of polymer-supported carbonylation catalyts", Journal of the chemical Society, Dalton Transactions, Vol. 12, pp. 2565-2572, 2002.
  42. J. A. McCleverty, G. Wilkinson, L. G. Lipson, M. L. Maddox, and H. D. Kaesz, "Dichlorotetracarbonyldirhodium (rhodium carbonyl chloride)", Inorganic Synthesis, Vol. 8, pp. 211-214, 1966.
  43. F. Malbosc, V. Chauby, C. Serra-Le Berre, M. Etienne, J.-C. Daran, and P. Kalck, "Solid-state and solution structures of a series of [($HBPz_3$ $Me_2) Rh(CO)([($PR_3$)] and [([($HBPz_3$ [($Me_2$,4Cl)Rh(CO)([($PR_3$)] complexes", Eur. J. Inorg. Chem., pp. 2689-2697, 2001.
  44. L. M. Vallarino, "Preparation and properties of a series of halocarbonylrhodates", Inorg. Chem., Vol. 4, pp. 161-165, 1965. https://doi.org/10.1021/ic50024a007
  45. C. E. Hickey and P. M. Maitlis, "Oxidative addition of methyl iodide to dicarbonylrhodium(I) complexes", Journal of the Chemical Society, Chemical Commnications, pp. 1609-1611, 1984.
  46. J.-H. Hong, "Two carbonylations of methyl iodide and trimethylamine to acetic acid and N,N-dimethylacetamide by rhodium(I) complex: stability of rhodium(I) complex under anhydrous condition", Catalysts, Vol. 5, pp. 1969-1982, 2015. https://doi.org/10.3390/catal5041969
  47. B. R. James and G. L. Rempel, "Direct carbonylation of solutions containing rhodium salts", Chem. Commun., pp. 158-158, 1967.
  48. D. Forster, "Halocarbonyl derivatives of rhodium", Inorg. Chem., Vol. 8, pp. 2556-2558, 1969. https://doi.org/10.1021/ic50082a004
  49. M. Sawicka, P. Storoniak, P. Skurski, J. Blaxejowski, and J. Rak, "TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quarternary methylammonium halides", Chem. Phys., Vol. 324, pp. 425-437, 2006. https://doi.org/10.1016/j.chemphys.2005.11.023
  50. H. Adams, N. A. Bailey, B. E. Mann, C. P. Mannel, C. M. Spencer, and A.G. Kent, "The solution behaviour of $[Rh_2(COMe)_2(CO)_2I_6]^{2-}$, its reactions with CO, pyridine, and methanol, and the X-ray structure of $[AsPh_4][Rh(COMe)(CO)(NC_5H_5)I_3]$", J. Chem. Soc., Dalton Transations, pp. 489-496, 1988.
  51. L. A. Howe and E. E. Bunel, "Oxidative addition of RCOI to [$AsPh_4 ^+$][$Rh(CO)_2I_2 ^-$]. Synthesis of [$AsPh_4^ +$][$RCORh(CO)_2I_3^ -$] (R = Me, Et, n-Pr, i-Pr)", Polyhedron, Vol. 14, pp. 167-173, 1995. https://doi.org/10.1016/0277-5387(94)00386-S
  52. A. Haynes, "Catalytic methanol carbonylation", Adv. Catal., Vol. 53, pp. 1-45, 2010.
  53. J. S. Roberts and H. A. Skinner, "Dissociation energies of carbon bonds, and resonance energies in hydrocarbon radicals", Transactions of the Faraday Society, Vol. 45, pp. 339-357, 1949. https://doi.org/10.1039/tf9494500339
  54. M. G. Voronkov, I. P. Tsyrendorzhieva, and V. I. Rakhlin, "Acyl iodide in organic synthesis: XI unusual N-C bond cleavage in tertiary amines", Russ. J. Org. Chem.+, Vol. 44, pp. 481-484, 2008. https://doi.org/10.1134/S1070428008040015
  55. M. G. Voronkov, N. N. Vlasova, O. Y. Grigor'eva, L. I. Belousova, and A.V. Vlasov, "Acyl iodides in organic synthesis. Reactions of acetyl iodide with urea, thiourea, and their N,N′-disubstituted derivatives", Russ. J. Org. Chem., Vol. 45, pp. 486- 490, 2009. https://doi.org/10.1134/S1070428009040022
  56. M. G. Voronkov, I. P. Tsyrendorzhieva, and V. I. Rakhlin, "Acyl iodide in organic synthesis: Reactions with morphoine, piperidine, and Nhydrocarbylpiperidines", Russ. J. Org. Chem.+, Vol. 46, pp. 794-797, 2010. https://doi.org/10.1134/S1070428010060047
  57. D. H. Nguyen, N. Lassauque, L. Vendier, S. Mallet- Ladeira, C. Le Berre, P. Serp, and P. Kalck, "Reductive elimination of anhydrides from anionic iodo acetyl carboxylato rhodium complexes", Eur. J. Inorg. Chem., Vol. 2014, pp. 326-336, 2014. https://doi.org/10.1002/ejic.201300933
  58. N. Lassauque, T. Davin, D. H. Nguyen, R. J. Adcock, Y. Coppel, C. L. Berre, P. Serp, L. Maron, and P. Kalck, "Direct involvement of the acetate ligand in the reductive elimination step of rhodiumcatalyzed methanol carbonylation", Inorg. Chem., Vol. 51, pp. 4-6, 2012. https://doi.org/10.1021/ic201574m
  59. M. M. Taqui Khan, S. B. Halligudi, and S. H. R. Abdi, "Kinetic study of the carbonylation of diethylamine and triethylamine catalyzed by the water-soluble K[Ru(III)(EDTA-H)Cl].2$H_2O$ complex in aqueous medium", Journal of Molecular Catalysis, Vol. 48, pp. 325-333, 1988. https://doi.org/10.1016/0304-5102(88)85015-6

Cited by

  1. Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds vol.10, pp.4, 2015, https://doi.org/10.13160/ricns.2017.10.4.175