
                   대한임베디드공학회논문지  제 10권 제  6호  2015년 12월                    335

ⓒ IEMEK J. Embed. Sys. Appl. 2015 Dec. 10(6) 335-343
ISSN : 1975-5066
http://dx.doi.org/10.14372/IEMEK.2015.10.6.335

Ⅰ. Introduction

 

The growing market of mobile devices has 

led to an increment of various purposes of  

mobile applications. Among them, some 

applications can be trusted if certified. 

However, even though the application is 

trusted, the potential of data leakage still 

exists when the mobile OSes are compromised. 

The mobile OSes such as Android and iOS can 

be compromised by rooting or jailbreaking 

attacks. These attacks allow malicious 

applications to obtain and to manage the root 

privilege, which can be a great threat for 

sensitive data.

There are two kinds of rooting attacks in 

Android [1]. One of them is exploiting system 

vulnerabilities, but recently, the number of the 

attacks has decreased as it has become harder 

to find vulnerabilities in Android any more. 

This is because Android uses two types of 

access control [2, 3], DAC (Discretionary 

Access Control) and MAC (Mandato ry Access 

Control).

The other method is flashing compromised 

image. This method cannot be protected by the 

dual access control mentioned above as 

attackers can newly flash a whole 

compromised Android Linux image (ALimage).

In order to prevent the compromised 

ALimage from being flashed, this paper 

proposes SeBo (Secure Boot) checker and 

SeBo monitor. SeBo checker and SeBo monitor 

verify the current ALimage whether it is 

trusted or not before the current Android 

starts up.

SeBo is implemented based on ARM 

TrustZone architecture. In the architecture, 

ARM TrustZone provides two types of the 

worlds; Secure world and  Normal world. In 

this paper, SeBo runs in Secure world and 

Android Linux in Normal world, respectively. 

By dividing SeBo and Android Linux into two 

worlds, these systems can be isolated from 

each other [4]. Therefore, the isolated SeBo 

in Secure world can check the Android Linux 

without any threats from Normal world. In this 

regard, SeBo guarantees secure environment 
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for mobile devices.

This paper is organized as follows. Section 

2 describes background concepts of ARM 

TrustZone. Section 3 briefly analyzes attack 

examples. Section 4 proposes the design and 

implementation of SeBo. Section 5 compares 

the evaluation results between SeBo and 

native. Related works on Secure Boot are 

presented in section 6. Finally, we conclude in 

section 7. 

 

Ⅱ. ARM TurstZone

ARM TrustZone architecture guarantees a 

system to be secure, if security intellectual 

features are suitably configured. This paper 

use a number of the security IPs in order to 

ensure secure boot sequence for preventing 

compromised Android Linux. SeBo uses 

following features: 

1. Operation Mode

ARM TrustZone architecture provides two 

executing domains called Secure world and Normal 

world. Within a world, OS can directly execute 

privileged instructions without any modification 

because both worlds have all the seven modes 

USR, FIQ, IRQ, UND, SVC, SYS, and ABORT that 

are defined by ARM architecture[5]. In addition, 

because the CPU mode and world domains are 

orthogonal, each world can execute its own OS 

and applications.

Secure world has a special mode called monitor 

mode to manage both worlds. The monitor mode 

takes charge of switching the worlds and sending 

the device interrupts to the corresponding worlds 

[6]. For the purpose, a new instruction called SMC 

(Secure Monitor Call) is introduced. When a guest 

OS issues an SMC instruction, the SMC exception 

is generated, and it is handled by the SMC handler 

in monitor mode of Secure world. The SMC 

handler saves the CPU context of the current 

world and restores that of opposite world. Then, 

the world is switched.

Fig. 1 Location of Internal and 

external memories

2. Internal ROM　and Internal SDRAM

ARM TrustZone architecture supports 

additional ROM and RAM called Internal ROM 

(iROM) and Internal SRAM (iSRAM). They can 

not be modified or replaced by simple 

reprogramming attacks [6]. Fig. 1 shows that 

the iROM and iSRAM are inside of the SoC 

and the external ROM and external DRAM are 

outside of the SoC.

We store and execute both SeBo checker 

and SeBo monitor in the iROM and the iSRAM 

because iROM and iSRAM ensure security. On 

the other hand, as external ROM and DRAM 

can be compromised, we store and execute 

Android Linux in external ROM and DRAM. 

Detailed description will be discussed in the 

Design and Implementation section.

 

3. Boot Sequence

ARM TrustZone architecture recommends two 

kinds of bootloaders [6]. With proper 

configurations of IPs, the first bootloader, Secure 

bootloader, can be implemented based on internal 

iROM and iRAM, and the other, Normal bootloader, 

can be implemented based on external ROM and 

DRAM, respectively. Fig. 2 describes the 

recommended sequence of the two kinds of 

bootloaders.

In order to separate and protect SeBo checker 

and SeBo monitor from the Android Linux in the 

Normal world, we locate two kinds of bootloaders 

as recommended. At first, Secure bootloader starts 

right after power on the mobile device. Then, 
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Fig. 2 ARM recommended sequence 

of Secure and Normal Bootloader

Secure world OS starts. The Secure world OS 

controls the Normal world components such as 

Normal bootloader and Normal world OS. Since the 

Secure world OS can be replaced with simpler 

system such as monitor systems, we use SeBo 

monitor instead of the Secure world OS. Finally, 

SeBo monitor controls Normal world components. 

Among Normal world components, we use Android 

Linux instead of the Normal world OS. The boot 

sequence in this paper will also be described in 

detail in the Section V.

 

Ⅲ. Attack Examples

 

Among the two kinds of rooting method 

mentioned above, we mainly focus on the 

attack examples of the latter method; flashing 

compromised image. There are two possible 

attack examples when flashing compromised 

image. Fig. 3 shows these two attack examples 

compare to the ideal operation; compromised 

ALimage with or without compromised Normal 

bootloader. The ideal operation neither have 

compromised ALimage nor compromised 

Normal bootloader.

In the ideal operation, the manufacturer’s 

Normal bootloader loads the manufacturer’s 

ALimage on the kernel load address and starts 

decompressing the image. However, since 

these manufacturer’s ALimage and bootloader 

are in the Normal world, attackers can replace 

them with the compromised ones.

If an attacker replaces the manufacturer’s 

ALimage with the compromise one, the 

manufacturer’s Normal bootloader loads the 

compromised ALimage. This is because a

Fig. 3 Attack examples of flashing 

compromised ALimage

manufacturer’s Normal bootloader usually loads 

an ALimage according to the fixed address 

without any checking. In other words, the 

manufacturer’s Normal bootloader only loads 

the ALimage from the fixed address whether 

the ALimage is compromised or not. Therefore, 

if the attacker locates the compromised 

ALimage on the fixed address, the 

manufacturer’s Normal bootloader loads the 

compromised ALimage.

In the case of an attacker replaces both 

manufacturer’s ALimage and bootloader with 

the compromised ones, the attacker can load 

an ALimage from any address via the 

compromised Normal bootloader. Namely, the 

attacker can load the compromised ALimage 

instead of the manufacturer’s avoiding the 

fixed address. 

Ⅳ. Design and Implementation of

SeBo Checker and SeBo Monitor

With SeBo checker and SeBo Monitor, the 

above attack examples can be defended since 

the SeBo checker verifies the Android Linux in 

the external DRAM. In order to prevent the
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Fig. 4 The architecture of SeBo components 

and trusted Android Linux

compromised Android Linux in the Normal 

world, both SeBo checker and SeBo Monitor 

should be separated from the Normal world. 

Fig. 4 shows the architecture of SeBo checker 

and SeBo monitor separated from the Normal 

world. 

From now on, we assume that all of the 

trusted Android Linux calls SeBo monitor via 

SMC instruction before the Android Linux 

executes. In the case of compromised Android 

Linux, we divide it into two types: the one 

that does not call the SeBo monitor and the 

other that can call SeBo monitor forcefully. 

The trusted Android Linux passes all the 

checks of SeBo components whereas both case 

of the compromised Android Linux cannot pass 

the checks.

1. SeBo Components

SeBo components fall into two main 

components: SeBo monitor and SeBo checker. 

Each role is as follows.

1.1 SeBo Monitor

 On the recommendation of ARM TrustZone 

architecture, a monitor should be a security 

critical gatekeeper that provides the interface 

between Normal world and Secure world via the 

following exceptions: an interrupt, and external 

abort, or an explicit call via an SMC instruction [5].

 SeBo monitor is also implemented as 

recommended. Additionally, SeBo monitor 

receives SMC from the Android Linux in the 

Normal world. Then, SeBo monitor executes 

SeBo checker. After that, SeBo monitor sends 

the start and the end addresses of current 

ALimage to the SeBo checker. If the Android 

Linux does not call SMC and bypasses the SeBo 

checker, the SeBo checker erases data and 

turns off the power.

1.2 SeBo Checker

 SeBo checker calculates the hash value of 

the addresses received from the SeBo monitor. 

After calculating the current hash value, SeBo 

checker compares the current hash value with 

the original hash value. The original hash value 

can be stored in a secure storage such as 

on-SoC ROM by the manufacturer in the first 

place. When the manufacturer wants to update 

the kernel, the manufacturer can send a new 

kernel ALimage with a new original hash value 

by Over The Air (OTA) management [7].

 If the original hash value does not match 

with the current hash value the SeBo checker 

erases data and turns off the power. On the 

contrary, if the original hash value matches with 

the current hash value, SeBo checker disables 

SeBo Watch Dog Timer. 

1.3 SeBo Watch Dog Timer

The SeBo Watch Dog Timer (WDT) detects 

the compromised Android Linux that bypassed 

the SeBo checker. SeBo WDT uses Global timer 

in ARM SoC [8]. SeBo WDT is implemented in 

the monitor code of Secure World by the 

reference to [9].

If the compromised Android Linux bypasses 

the SeBo checker, the SeBo WDT expires 

because the SeBo checker does not disable the 

SeBo WDT. After the SeBo WDT expired, the 

SeBo WDT sends FIQ to the SeBo checker and 

the SeBo checker erases data and turns off the 

power.
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Fig. 5 The flow charts of the SeBo boot 

sequence

2. SeBo Boot Sequence

In this section, we describe the boot 

sequence of the above SeBo components called 

SeBo boot sequence. Fig. 5 shows the flow 

charts of the overall (Fig. 5(A)) and the 

detailed (Fig. 5(B)) SeBo Boot sequence. 

As shown in Fig. 5(A), SeBo monitor and 

SeBo checker check the Android Linux after 

the Normal bootloader starts to decompressing 

the ALimage. Specifically, the SeBo monitor 

receives SMC, during the decompressing time. 

After that, the SeBo monitor temporary stops 

the decompressing and sends the start and end 

addresses to the SeBo checker. Then, the 

SeBo checker starts checking the Android 

Linux. Finally, the SeBo checker finishes the 

checks and completes the decompressing 

before executing the Android Linux.

Fig. 5(B) shows three possible cases of 

scenarios that can either pass or fail the 

checks of the SeBo checker.

The first scenario, in Fig. 5(B)-①, 

describes the ideal operation of trusted 

Android Linux. The trusted Android Linux can 

pass all checks and be executed. 

The second scenario, shown in Fig. 5(B)-②, 

describes the operation of compromised 

Android Linux that does not contain SMC 

instruction. Without SMC instruction, The 

compromised Android Linux cannot call SeBo 

monitor and bypasses the SeBo checker. 

Bypassing the SeBo checker expires the SeBo 

WDT. Then, the SeBo checker erases data 

from ROM and turns off the power.

The third scenario, shown in Fig. 5(B)-③, 

describes the operation of compromised 

Android Linux that contains SMC instruction. If 

the attacker forcibly inserts the SMC 

instruction in the compromised Android Linux 

to avoid SeBo WDT expiration, the SeBo 

checker detects it by comparing its hash value 

with the original hash value. Mismatching hash 

value leads the SeBo checker to erase Data 

from ROM and to turn off the power. 

V. Evaluation

We implemented SeBo in DTK4412 board 

for evaluation. DTK4412 board is an Android 

Linux platform based on Samsung Exynos 4412 

quad core processor. DTK4412 includes u-boot 

2010.12, Android 4.0.4 (Ice Cream Sandwich) 

and Linux 3.0.15.

SeBo monitor has 2054 lines of assembly 

code and SeBo checker has 1165 lines of C 

code. For trusted ALimage, we added 6 lines 

of assembly code to call SMC instruction. We 

first analyze the performance result of SeBo. 

Then we describe the detection results of 

SeBo according to each attack example.

1. Performance Evaluation

Since SeBo operates in the boot sequence, 

SeBo cause no effect on the runtime performance.
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Fig. 6 Total boot time of SeBo and Native

Fig. 7 SeBo operation divided by three phases

Therefore, we focus on the performance of 

boot time and analyze it accordingly. Fig. 6 

describes the total boot time of SeBo and 

native. The native boot time means general 

boot time without SeBo. 

The Y-axis of Fig. 6 describes total boot 

time which is measured in seconds. Comparing 

the two, SeBo boot time delays only about 3 

seconds more than that of the native. In other 

words, SeBo finishes all its operation within 4 

seconds. SeBo operation can be divided by 

three phases as shown in Fig. 7.

In  F ig .  8 ,  t he  X-ax is  descr ibes  t he 

execution time and Y-axis indicates SeBo 

execution divided by three phases. As shown 

in Fig.8, comparing hash values between the 

original and the current occupies most of the 

operation time. In this paper, we use MD5 

hash function since the MD5 calculates the 

hashed value faster than that of SHA-1 [10]. 

Though MD5 is faster than the other hash 

functions, it takes much time to calculate the 

whole ALimage value because of its various 

operation process [11]. Therefore, due to the 

characteristics of the MD5 hash function, the 

amount of time increases rapidly depending on 

the size of ALimage. For example, the size of 

Fig. 8 The execution time of SeBo

Fig. 9 SeBo hashing times according to 

ALimage sizes

our experiment ALimage was 3.8Mbyte and it 

took 3.58 seconds for SeBo to hash the 

values. The other hashing times according to 

their ALimage sizes are shown in Fig. 9.

We set SeBo WDT to be expired within 5 

seconds considering the fact that most of 

ALimage rarely over 5Mbyte.

2. Detection Results

In order to evaluate SeBo, we made two 

types of compromised ALimages and a 

compromised bootloader. The first type of 

ALimage has SMC instruction and the other 

does not have SMC instruction. Since the size 

of a general ALimage is within 4Mbyte, we 

limit the size of ALimages by 4Mbyte. The 

compromised bootloader loads a ALimage from 
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Without SMC With SMC

Trusted Img. &

Trusted Bootldr.
-

Undetected

(-)

Comp. Img.
Detected

(5s)

Detected

(3.8s)

Comp. Img. &

Comp. Bootldr.

Detected

(5s)

Detected

(4.0s)

Table 1. The detect results and detected time

uncommon address. Table 1 describes the 

detect results and the detected time of four 

attack examples. The detected time is 

measured after a bootloader loads an ALimage 

on a external DRAM. We also include the 

trusted case for the comparison.

As shown in Table 1, the ideal case with 

trusted ALimage and trusted bootloader was 

undetected by SeBo. However, SeBo detected 

all the four cases of compromised ALimages. 

It takes the exact 5 seconds for SeBo to 

detect any compromised ALimage that does not 

have SMC instruction. This is because SeBo 

WDT expires within 5 seconds if the 

compromised ALimage bypasses the SeBo 

checker. 

If a compromised ALimage has SMC 

instruction, SeBo took about 4 seconds to 

detect the ALimage. Especially, the SeBo 

checker takes most of the time due to 

generating hash value of the current ALimage 

and comparing it with the original hash value.

Ⅵ. Related Work

For comparing the related work, we 

introduce Samsung KNOX Workspace. Samsung 

KNOX guarantees platform security with three 

strategies: Customizable Secure Boot, ARM 

TrustZone-based Integrity  Measurement 

Architecture (TIMA), and a kernel with built-in 

Security Enhanced Android access Control 

[12]. Among them, we focused on the 

Customizable Secure Boot since it has the 

same goal with different approach. Table 2 

summarizes similarities and differences

SeBo KNOX

Goal
Preventing compromised

Normal OS & Normal bootloader

Based 

on
ARM TrustZone

Checks - ALImage

- Normal 

  Bootloader

- ALImage

Operates 

in
- Boot sequence

- Boot sequence

- Runtime

Table 2. Similarities and differences between 

SeBo and KNOX

between SeBo and KNOX.

Both SeBo and KNOX prevents compromised 

Normal OS and bootloader and guarantees 

secure boot. They are also based on the ARM 

TrustZone architecture.

Even though the goal is the same, their 

approach is different. KNOX not only checks 

ALimage but also Normal bootloader, which 

means, KNOX trusts Normal bootloader and 

allows Normal bootloader to check the 

integrity of the ALimage. SeBo, on the other 

hand, only checks the ALimage and does not 

check Normal bootloader. Instead of trusting 

the Normal bootloader in the Normal World, 

SeBo trusts SeBo checker in the Secure World 

and let SeBo checker to check the integrity of 

the ALimage. Therefore, SeBo can check the 

ALimage safely without trusting the 

components in the Normal World. Such a 

method also can reduce the overhead of 

checking the Normal Bootloader.

KNOX provides two kinds of boot 

mechanism; Secure Boot and Trusted Boot. 

Similar to SeBo, Secure Boot operates only in 

the boot sequence and not in the system 

runtime. However, Trusted Boot consistently 

checks the integrity of the system in the system 

runtime. Since the scope of SeBo is only limited 

to the integrity of the boot sequence, checking 

the integrity of the system runtime is additionally 

required for the future work.
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Ⅶ. Conclusion and Future Work

The results of this study suggests that 

SeBo can provide secure boot environment by 

preventing not only compromised OS but also 

compromised Normal bootloader. From the 

result, SeBo detects all the attacks within 5 

seconds only with 3225 lines of additional 

code. Moreover, SeBo is lightweight because 

SeBo focuses only on the boot component from 

Secure World, free of superfluousness.

Since SeBo hashes the ALimage value only 

with the MD5, performance comparison 

between MD5 and the other hash functions is 

needed for the future work. Furthermore, 

checking mechanism in the system runtime 

such as data access control [13, 14], is 

required. 
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