
 대한임베디드공학회논문지 제 10권 제 6호 2015년 12월 335

ⓒ IEMEK J. Embed. Sys. Appl. 2015 Dec. 10(6) 335-343
ISSN : 1975-5066
http://dx.doi.org/10.14372/IEMEK.2015.10.6.335

Ⅰ. Introduction

The growing market of mobile devices has

led to an increment of various purposes of

mobile applications. Among them, some

applications can be trusted if certified.

However, even though the application is

trusted, the potential of data leakage still

exists when the mobile OSes are compromised.

The mobile OSes such as Android and iOS can

be compromised by rooting or jailbreaking

attacks. These attacks allow malicious

applications to obtain and to manage the root

privilege, which can be a great threat for

sensitive data.

There are two kinds of rooting attacks in

Android [1]. One of them is exploiting system

vulnerabilities, but recently, the number of the

attacks has decreased as it has become harder

to find vulnerabilities in Android any more.

This is because Android uses two types of

access control [2, 3], DAC (Discretionary

Access Control) and MAC (Mandato ry Access

Control).

The other method is flashing compromised

image. This method cannot be protected by the

dual access control mentioned above as

attackers can newly flash a whole

compromised Android Linux image (ALimage).

In order to prevent the compromised

ALimage from being flashed, this paper

proposes SeBo (Secure Boot) checker and

SeBo monitor. SeBo checker and SeBo monitor

verify the current ALimage whether it is

trusted or not before the current Android

starts up.

SeBo is implemented based on ARM

TrustZone architecture. In the architecture,

ARM TrustZone provides two types of the

worlds; Secure world and Normal world. In

this paper, SeBo runs in Secure world and

Android Linux in Normal world, respectively.

By dividing SeBo and Android Linux into two

worlds, these systems can be isolated from

each other [4]. Therefore, the isolated SeBo

in Secure world can check the Android Linux

without any threats from Normal world. In this

regard, SeBo guarantees secure environment

SeBo: Secure Boot System for

Preventing Compromised Android Linux

Tong Min Kim, Se Won Kim, Chuck Yoo*

Abstract : As the usage of mobile devices becomes diverse, a number of attacks on Android

also have increased. Among the attacks, Android can be compromised by flashing a new image

of compromised Android Linux. In order to solve this problem, we propose SeBo (Secure Boot

System) which prevents compromised Android Linux by guaranteeing secure boot environment for

mobile devices based on ARM TrustZone architecture. SeBo checks the hash value of the

Android Linux image before the Android Linux executes. SeBo detects all the attacks within 5

seconds. Moreover, since SeBo only trusts the Secure Bootloader from Secure World, SeBo can

reduce the additional overhead of checking the Normal Bootloader from Normal World.

Keywords : Secure boot, Embedded system, Embedded security, Android, Linux, ARM TrustZone

*Corresponding Author(hxy@os.korea.ac.kr)

Received: 31 Jan. 2015, Revised: 19 May 2015,

Accepted: 27 May 2015.

T.M. Kim, S.W. Kim, C. Yoo: Korea University

※ 이 논문은 국가과학기술연구망(KREONET)을

이용하여 한국연구재단의 지원을 받아 수행된 연

구임(No.2010-0029180)

336 SeBo: Secure Boot System for Preventing Compromised Android Linux

for mobile devices.

This paper is organized as follows. Section

2 describes background concepts of ARM

TrustZone. Section 3 briefly analyzes attack

examples. Section 4 proposes the design and

implementation of SeBo. Section 5 compares

the evaluation results between SeBo and

native. Related works on Secure Boot are

presented in section 6. Finally, we conclude in

section 7.

Ⅱ. ARM TurstZone

ARM TrustZone architecture guarantees a

system to be secure, if security intellectual

features are suitably configured. This paper

use a number of the security IPs in order to

ensure secure boot sequence for preventing

compromised Android Linux. SeBo uses

following features:

1. Operation Mode

ARM TrustZone architecture provides two

executing domains called Secure world and Normal

world. Within a world, OS can directly execute

privileged instructions without any modification

because both worlds have all the seven modes

USR, FIQ, IRQ, UND, SVC, SYS, and ABORT that

are defined by ARM architecture[5]. In addition,

because the CPU mode and world domains are

orthogonal, each world can execute its own OS

and applications.

Secure world has a special mode called monitor

mode to manage both worlds. The monitor mode

takes charge of switching the worlds and sending

the device interrupts to the corresponding worlds

[6]. For the purpose, a new instruction called SMC

(Secure Monitor Call) is introduced. When a guest

OS issues an SMC instruction, the SMC exception

is generated, and it is handled by the SMC handler

in monitor mode of Secure world. The SMC

handler saves the CPU context of the current

world and restores that of opposite world. Then,

the world is switched.

Fig. 1 Location of Internal and

external memories

2. Internal ROM　and Internal SDRAM

ARM TrustZone architecture supports

additional ROM and RAM called Internal ROM

(iROM) and Internal SRAM (iSRAM). They can

not be modified or replaced by simple

reprogramming attacks [6]. Fig. 1 shows that

the iROM and iSRAM are inside of the SoC

and the external ROM and external DRAM are

outside of the SoC.

We store and execute both SeBo checker

and SeBo monitor in the iROM and the iSRAM

because iROM and iSRAM ensure security. On

the other hand, as external ROM and DRAM

can be compromised, we store and execute

Android Linux in external ROM and DRAM.

Detailed description will be discussed in the

Design and Implementation section.

3. Boot Sequence

ARM TrustZone architecture recommends two

kinds of bootloaders [6]. With proper

configurations of IPs, the first bootloader, Secure

bootloader, can be implemented based on internal

iROM and iRAM, and the other, Normal bootloader,

can be implemented based on external ROM and

DRAM, respectively. Fig. 2 describes the

recommended sequence of the two kinds of

bootloaders.

In order to separate and protect SeBo checker

and SeBo monitor from the Android Linux in the

Normal world, we locate two kinds of bootloaders

as recommended. At first, Secure bootloader starts

right after power on the mobile device. Then,

 대한임베디드공학회논문지 제 10권 제 6호 2015년 12월 337

Fig. 2 ARM recommended sequence

of Secure and Normal Bootloader

Secure world OS starts. The Secure world OS

controls the Normal world components such as

Normal bootloader and Normal world OS. Since the

Secure world OS can be replaced with simpler

system such as monitor systems, we use SeBo

monitor instead of the Secure world OS. Finally,

SeBo monitor controls Normal world components.

Among Normal world components, we use Android

Linux instead of the Normal world OS. The boot

sequence in this paper will also be described in

detail in the Section V.

Ⅲ. Attack Examples

Among the two kinds of rooting method

mentioned above, we mainly focus on the

attack examples of the latter method; flashing

compromised image. There are two possible

attack examples when flashing compromised

image. Fig. 3 shows these two attack examples

compare to the ideal operation; compromised

ALimage with or without compromised Normal

bootloader. The ideal operation neither have

compromised ALimage nor compromised

Normal bootloader.

In the ideal operation, the manufacturer’s

Normal bootloader loads the manufacturer’s

ALimage on the kernel load address and starts

decompressing the image. However, since

these manufacturer’s ALimage and bootloader

are in the Normal world, attackers can replace

them with the compromised ones.

If an attacker replaces the manufacturer’s

ALimage with the compromise one, the

manufacturer’s Normal bootloader loads the

compromised ALimage. This is because a

Fig. 3 Attack examples of flashing

compromised ALimage

manufacturer’s Normal bootloader usually loads

an ALimage according to the fixed address

without any checking. In other words, the

manufacturer’s Normal bootloader only loads

the ALimage from the fixed address whether

the ALimage is compromised or not. Therefore,

if the attacker locates the compromised

ALimage on the fixed address, the

manufacturer’s Normal bootloader loads the

compromised ALimage.

In the case of an attacker replaces both

manufacturer’s ALimage and bootloader with

the compromised ones, the attacker can load

an ALimage from any address via the

compromised Normal bootloader. Namely, the

attacker can load the compromised ALimage

instead of the manufacturer’s avoiding the

fixed address.

Ⅳ. Design and Implementation of

SeBo Checker and SeBo Monitor

With SeBo checker and SeBo Monitor, the

above attack examples can be defended since

the SeBo checker verifies the Android Linux in

the external DRAM. In order to prevent the

338 SeBo: Secure Boot System for Preventing Compromised Android Linux

Fig. 4 The architecture of SeBo components

and trusted Android Linux

compromised Android Linux in the Normal

world, both SeBo checker and SeBo Monitor

should be separated from the Normal world.

Fig. 4 shows the architecture of SeBo checker

and SeBo monitor separated from the Normal

world.

From now on, we assume that all of the

trusted Android Linux calls SeBo monitor via

SMC instruction before the Android Linux

executes. In the case of compromised Android

Linux, we divide it into two types: the one

that does not call the SeBo monitor and the

other that can call SeBo monitor forcefully.

The trusted Android Linux passes all the

checks of SeBo components whereas both case

of the compromised Android Linux cannot pass

the checks.

1. SeBo Components

SeBo components fall into two main

components: SeBo monitor and SeBo checker.

Each role is as follows.

1.1 SeBo Monitor

 On the recommendation of ARM TrustZone

architecture, a monitor should be a security

critical gatekeeper that provides the interface

between Normal world and Secure world via the

following exceptions: an interrupt, and external

abort, or an explicit call via an SMC instruction [5].

 SeBo monitor is also implemented as

recommended. Additionally, SeBo monitor

receives SMC from the Android Linux in the

Normal world. Then, SeBo monitor executes

SeBo checker. After that, SeBo monitor sends

the start and the end addresses of current

ALimage to the SeBo checker. If the Android

Linux does not call SMC and bypasses the SeBo

checker, the SeBo checker erases data and

turns off the power.

1.2 SeBo Checker

 SeBo checker calculates the hash value of

the addresses received from the SeBo monitor.

After calculating the current hash value, SeBo

checker compares the current hash value with

the original hash value. The original hash value

can be stored in a secure storage such as

on-SoC ROM by the manufacturer in the first

place. When the manufacturer wants to update

the kernel, the manufacturer can send a new

kernel ALimage with a new original hash value

by Over The Air (OTA) management [7].

 If the original hash value does not match

with the current hash value the SeBo checker

erases data and turns off the power. On the

contrary, if the original hash value matches with

the current hash value, SeBo checker disables

SeBo Watch Dog Timer.

1.3 SeBo Watch Dog Timer

The SeBo Watch Dog Timer (WDT) detects

the compromised Android Linux that bypassed

the SeBo checker. SeBo WDT uses Global timer

in ARM SoC [8]. SeBo WDT is implemented in

the monitor code of Secure World by the

reference to [9].

If the compromised Android Linux bypasses

the SeBo checker, the SeBo WDT expires

because the SeBo checker does not disable the

SeBo WDT. After the SeBo WDT expired, the

SeBo WDT sends FIQ to the SeBo checker and

the SeBo checker erases data and turns off the

power.

 대한임베디드공학회논문지 제 10권 제 6호 2015년 12월 339

Fig. 5 The flow charts of the SeBo boot

sequence

2. SeBo Boot Sequence

In this section, we describe the boot

sequence of the above SeBo components called

SeBo boot sequence. Fig. 5 shows the flow

charts of the overall (Fig. 5(A)) and the

detailed (Fig. 5(B)) SeBo Boot sequence.

As shown in Fig. 5(A), SeBo monitor and

SeBo checker check the Android Linux after

the Normal bootloader starts to decompressing

the ALimage. Specifically, the SeBo monitor

receives SMC, during the decompressing time.

After that, the SeBo monitor temporary stops

the decompressing and sends the start and end

addresses to the SeBo checker. Then, the

SeBo checker starts checking the Android

Linux. Finally, the SeBo checker finishes the

checks and completes the decompressing

before executing the Android Linux.

Fig. 5(B) shows three possible cases of

scenarios that can either pass or fail the

checks of the SeBo checker.

The first scenario, in Fig. 5(B)-①,

describes the ideal operation of trusted

Android Linux. The trusted Android Linux can

pass all checks and be executed.

The second scenario, shown in Fig. 5(B)-②,

describes the operation of compromised

Android Linux that does not contain SMC

instruction. Without SMC instruction, The

compromised Android Linux cannot call SeBo

monitor and bypasses the SeBo checker.

Bypassing the SeBo checker expires the SeBo

WDT. Then, the SeBo checker erases data

from ROM and turns off the power.

The third scenario, shown in Fig. 5(B)-③,

describes the operation of compromised

Android Linux that contains SMC instruction. If

the attacker forcibly inserts the SMC

instruction in the compromised Android Linux

to avoid SeBo WDT expiration, the SeBo

checker detects it by comparing its hash value

with the original hash value. Mismatching hash

value leads the SeBo checker to erase Data

from ROM and to turn off the power.

V. Evaluation

We implemented SeBo in DTK4412 board

for evaluation. DTK4412 board is an Android

Linux platform based on Samsung Exynos 4412

quad core processor. DTK4412 includes u-boot

2010.12, Android 4.0.4 (Ice Cream Sandwich)

and Linux 3.0.15.

SeBo monitor has 2054 lines of assembly

code and SeBo checker has 1165 lines of C

code. For trusted ALimage, we added 6 lines

of assembly code to call SMC instruction. We

first analyze the performance result of SeBo.

Then we describe the detection results of

SeBo according to each attack example.

1. Performance Evaluation

Since SeBo operates in the boot sequence,

SeBo cause no effect on the runtime performance.

340 SeBo: Secure Boot System for Preventing Compromised Android Linux

Fig. 6 Total boot time of SeBo and Native

Fig. 7 SeBo operation divided by three phases

Therefore, we focus on the performance of

boot time and analyze it accordingly. Fig. 6

describes the total boot time of SeBo and

native. The native boot time means general

boot time without SeBo.

The Y-axis of Fig. 6 describes total boot

time which is measured in seconds. Comparing

the two, SeBo boot time delays only about 3

seconds more than that of the native. In other

words, SeBo finishes all its operation within 4

seconds. SeBo operation can be divided by

three phases as shown in Fig. 7.

In F ig . 8 , t he X-ax is descr ibes t he

execution time and Y-axis indicates SeBo

execution divided by three phases. As shown

in Fig.8, comparing hash values between the

original and the current occupies most of the

operation time. In this paper, we use MD5

hash function since the MD5 calculates the

hashed value faster than that of SHA-1 [10].

Though MD5 is faster than the other hash

functions, it takes much time to calculate the

whole ALimage value because of its various

operation process [11]. Therefore, due to the

characteristics of the MD5 hash function, the

amount of time increases rapidly depending on

the size of ALimage. For example, the size of

Fig. 8 The execution time of SeBo

Fig. 9 SeBo hashing times according to

ALimage sizes

our experiment ALimage was 3.8Mbyte and it

took 3.58 seconds for SeBo to hash the

values. The other hashing times according to

their ALimage sizes are shown in Fig. 9.

We set SeBo WDT to be expired within 5

seconds considering the fact that most of

ALimage rarely over 5Mbyte.

2. Detection Results

In order to evaluate SeBo, we made two

types of compromised ALimages and a

compromised bootloader. The first type of

ALimage has SMC instruction and the other

does not have SMC instruction. Since the size

of a general ALimage is within 4Mbyte, we

limit the size of ALimages by 4Mbyte. The

compromised bootloader loads a ALimage from

 대한임베디드공학회논문지 제 10권 제 6호 2015년 12월 341

Without SMC With SMC

Trusted Img. &

Trusted Bootldr.
-

Undetected

(-)

Comp. Img.
Detected

(5s)

Detected

(3.8s)

Comp. Img. &

Comp. Bootldr.

Detected

(5s)

Detected

(4.0s)

Table 1. The detect results and detected time

uncommon address. Table 1 describes the

detect results and the detected time of four

attack examples. The detected time is

measured after a bootloader loads an ALimage

on a external DRAM. We also include the

trusted case for the comparison.

As shown in Table 1, the ideal case with

trusted ALimage and trusted bootloader was

undetected by SeBo. However, SeBo detected

all the four cases of compromised ALimages.

It takes the exact 5 seconds for SeBo to

detect any compromised ALimage that does not

have SMC instruction. This is because SeBo

WDT expires within 5 seconds if the

compromised ALimage bypasses the SeBo

checker.

If a compromised ALimage has SMC

instruction, SeBo took about 4 seconds to

detect the ALimage. Especially, the SeBo

checker takes most of the time due to

generating hash value of the current ALimage

and comparing it with the original hash value.

Ⅵ. Related Work

For comparing the related work, we

introduce Samsung KNOX Workspace. Samsung

KNOX guarantees platform security with three

strategies: Customizable Secure Boot, ARM

TrustZone-based Integrity Measurement

Architecture (TIMA), and a kernel with built-in

Security Enhanced Android access Control

[12]. Among them, we focused on the

Customizable Secure Boot since it has the

same goal with different approach. Table 2

summarizes similarities and differences

SeBo KNOX

Goal
Preventing compromised

Normal OS & Normal bootloader

Based

on
ARM TrustZone

Checks - ALImage

- Normal

 Bootloader

- ALImage

Operates

in
- Boot sequence

- Boot sequence

- Runtime

Table 2. Similarities and differences between

SeBo and KNOX

between SeBo and KNOX.

Both SeBo and KNOX prevents compromised

Normal OS and bootloader and guarantees

secure boot. They are also based on the ARM

TrustZone architecture.

Even though the goal is the same, their

approach is different. KNOX not only checks

ALimage but also Normal bootloader, which

means, KNOX trusts Normal bootloader and

allows Normal bootloader to check the

integrity of the ALimage. SeBo, on the other

hand, only checks the ALimage and does not

check Normal bootloader. Instead of trusting

the Normal bootloader in the Normal World,

SeBo trusts SeBo checker in the Secure World

and let SeBo checker to check the integrity of

the ALimage. Therefore, SeBo can check the

ALimage safely without trusting the

components in the Normal World. Such a

method also can reduce the overhead of

checking the Normal Bootloader.

KNOX provides two kinds of boot

mechanism; Secure Boot and Trusted Boot.

Similar to SeBo, Secure Boot operates only in

the boot sequence and not in the system

runtime. However, Trusted Boot consistently

checks the integrity of the system in the system

runtime. Since the scope of SeBo is only limited

to the integrity of the boot sequence, checking

the integrity of the system runtime is additionally

required for the future work.

342 SeBo: Secure Boot System for Preventing Compromised Android Linux

Ⅶ. Conclusion and Future Work

The results of this study suggests that

SeBo can provide secure boot environment by

preventing not only compromised OS but also

compromised Normal bootloader. From the

result, SeBo detects all the attacks within 5

seconds only with 3225 lines of additional

code. Moreover, SeBo is lightweight because

SeBo focuses only on the boot component from

Secure World, free of superfluousness.

Since SeBo hashes the ALimage value only

with the MD5, performance comparison

between MD5 and the other hash functions is

needed for the future work. Furthermore,

checking mechanism in the system runtime

such as data access control [13, 14], is

required.

References

[1] S. Yuru, X. Luo, C. Qian. “Rootguard:

Protecting rooted android phones," IEEE

Computer Vol. 47, No. 6, pp. 32-40, 2014.

[2] S. Smalley, “The case for SE Android,” In

Linux Security Summit 2011.

http://selinuxproject.org/~jmorris/lss2011_slides/

caseforseandroid.pdf.

[3] S. Smalley, R. Craig. “Security Enhanced

(SE) Android: Bringing Flexible MAC to

Android," NDSS (Vol. 310, pp. 20-38), 2013.

[4] T.M. Kim, S.W. Kim, C. Yoo, “Tiny

Monitoring Platform for Protecting Data

against Compromised Mobile Operating

Systems," Proceeding of Autumn Conference

on IEMEK (in Korean).

[5] Technologies, A.R.M “ARM Architecture

Reference Manual ARMv7-A and ARMv7-R

edition, " URL: ARM Architecture Reference

Manual ARMv7-A and ARMv7-R edition

[6] Technologies, A.R.M “ARM Security

Technology Building a Secure System using

TrustZone® Technology,”

http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.prd29-genc-009492c/index.html

[7] Aghera, P., Bok, A., Chintada, S., Rao, S., &

Rinaldi, A. (2003). U.S. Patent Application

10/652,352.

[8] Technologies, A.R.M “Chapter 4. Global

timer, private timers, and watchdog

registers,”

http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.ddi0407i/BEJHAGEE.html

[9] LWN.net, “ARM:global_timer: Add ARM

global timer support,”

https://lwn.net/Articles/549648/

[10] D. Menascé, “Security performance." IEEE

Internet Computing, Vol. 7, No. 3, pp.

84-87, 2003.

[11] R. Rivest, “The MD5 message-digest

algorithm,”

http://tools.ietf.org/html/rfc1321?ref=driverla

yer.com, 1992.

[12] Technologies, Samsung “Samsung KNOX

Workspace"

https://www.samsungknox.com/en/products/

knox-workspace/technical

[13] J. Shin, Y. Kim, W. Park, C. Park, “A

Secure Data Management Framwork based

on ARM TrustZone for Cloud Storage

Services," Proceeding of Autumn

Conference on IEMEK (in Korean).

[14] J. Shin, Y. Kim, W. Park, C. Park, "A

Method for Data Access Control and Key

Management in Mobile Cloud Storage

Services," J. IEMEK Embed. Syst. Appl.,

Vol. 8, No. 6, pp. 303-309, 2013 (in Korean).

 대한임베디드공학회논문지 제 10권 제 6호 2015년 12월 343

Tong Min Kim (김 동 민)

Received the B.S. degrees

in computer science from

Dongduk Women’s

University. She is cur-

rently pursuing her M.S.

degree in College of

Informatics, Korea

University, Seoul, Korea. Her research

interests include operating system, em-

bedded system and computer security.

Email: tmkim@os.korea.ac.kr

Se Won Kim (김 세 원)

Received the B.S. and

M.S. degrees in computer

science from Korea

University. He is

currently pursuing his

Ph.D. degree in College

of Informatics, Korea

University, Seoul, Korea. His research

interests include realtime system,

embedded system and power

management.

Email: swkim@os.korea.ac.kr

Chuck Yoo (유 혁)

Received the B.S. and M.S.

degrees in electronic

engineering from Seoul

National University, Seoul,

Korea, and the M.S. and

Ph.D. degrees in computer

science from University of Michigan,

Ann Arbor, USA. He worked as a

researcher in Sun Microsystems

Laboratory from 1990 to 1995. He is a

professor in the College of Information

and Communications, Korea University,

Seoul, Korea since 1995. His research

interests include operating systems,

embedded systems, virtualization, and

multimedia streaming.

Email: hxy@os.korea.ac.kr

d

