DOI QR코드

DOI QR Code

RF 열플라즈마를 이용한 Y2O3:Eu3+ 적색 나노 형광체 분말 합성

Synthesis and characterization of Y2O3 : Eu3+ red nano phosphor powders using RF thermal plasma

  • 이승용 (한국세라믹기술원 이천분원) ;
  • 구상만 (한양대학교 화학공학과) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원)
  • Lee, Seung-Yong (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Koo, Sang-Man (Department of Chemical Engineering, Hanyang University) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2015.10.28
  • 심사 : 2015.11.20
  • 발행 : 2015.12.31

초록

$Y_2O_3:Eu^{3+}$는 우수한 적색 발광 특성을 가지고 있는 형광체로 최근 고화질 디스플레이에 대한 수요가 증가함에 따라 관련 연구가 활발히 진행되고 있다. 본 연구에서는 RF 열플라즈마 합성법과 고상법을 이용하여 $Y_2O_3:Eu^{3+}$ 적색 형광체를 합성하였으며, 합성 방법에 따른 $Y_2O_3:Eu^{3+}$ 적색 형광체의 결정 구조, 미세 구조, 발광 특성의 차이를 XRD, TEM, PL 분석을 통해 비교하였다. 고상법으로 합성된 $Y_2O_3:Eu^{3+}$ 적색 형광체의 입자는 약 $10{\sim}20{\mu}m$ 크기를 가지는 반면, RF 열플라즈마 합성법을 통해 합성된 적색 형광체는 반응부는 약 100 nm, 필터부는 약 30 nm의 크기를 갖는 나노 형광체로 확인되었다. 합성된 모든 분말들은 PL 측정결과 611 nm($^5D_0{\rightarrow}^7F_2$)에서 발광하는 것을 확인하였으며, 결정 크기와 입도가 증가할수록 PL intensity가 증가하였다. 또한, 추가 열처리 공정이 필요 없는 one-step 공정의 RF 열플라즈마 공정을 통해 합성된 $Y_2O_3:Eu^{3+}$ 적색 나노 형광체는 고상법으로 합성된 적색 형광체와 비슷한 발광 특성을 보이는 것을 확인할 수 있었다.

$Y_2O_3:Eu^{3+}$ is an excellent red-emitting phosphor, which has been widely used for display devices due to highly luminescent property and chemical stability. In this study, $Y_2O_3:Eu^{3+}$ red phosphors were prepared using the solid state reaction and RF thermal plasma synthesis. The particle size of $Y_2O_3:Eu^{3+}$ phosphors obtained by the solid state reaction varied from 10 to $20{\mu}m$, and 30~100 nanometer sized $Y_2O_3:Eu^{3+}$ particles were obtained from a liquid form of raw material through RF thermal plasma synthesis without an additional heat treatment. Photoluminescence measurements of the obtained $Y_2O_3:Eu^{3+}$ particles showed a red emission peak at 611 nm ($^5D_0{\rightarrow}^7F_2$). PL intensity of red nano phosphors prepared by RF thermal plasma synthesis was comparable to that of red phosphors prepared by the solid state reaction, indicating that nano-sized $Y_2O_3:Eu^{3+}$ red phosphors could be successfully synthesized using one-step process of RF thermal plasma.

키워드

참고문헌

  1. Y. Sun, L. Qi, M, Lee, B.I. Lee, W.D. Samuels and G.J. Exarhos, "Photoluminescent properties of $Y_2O_3$ : $Eu^{3+}$ phosphors prepared via urea precipitation in non-aqueous solution", J. Lumin. 109 (2004) 85. https://doi.org/10.1016/j.jlumin.2004.01.085
  2. V.A Bolchouchine, E.T Goldburt, B.N Levonovitch, V.N Litchmanova and N.P Sochtine, "Designed, highly-efficient FED phosphors and screens", J. Lumin. 87 (2000) 1277.
  3. S.V. Zaitsev, Yu.V. Yermolayeva, A.N. Gruzintsev, E.A. Kudrenko, I.I. Zverkova, O. Bezkrovnyi, A.V. Tolmachev and G.A. Emelchenko, "Geometry effect on spontaneous emission decay in nano-sized $Y_2O_3$-$Eu^{3+}$ particles", J. Opt. Mater. 37 (2014) 714.
  4. W.F. Chen, Y.P. Tong, Y. Liu, M. Liu, Y.C. Lin, B. Gong, Z.S. Cai and X.L. Zhong, "Facile synthesis and luminescent properties of $Y_2O_3$ : $Eu^{3+}$ nanophosphors via thermal decomposition of co-crystallized yttrium europium propionates", Ceram. Int. 39 (2012) 3741.
  5. H.S. Roh, C.H. Lee, H.S. Yoon, Y.C. Kang, H.D. Park and S.B. Park, "Spherical-shaped $Zn_2SiO_4$ : Mn phosphor particles with $Gd(^{3+})/Li(^+)$ codopant", Korean Chem. Eng. Res. 40 (2002) 752.
  6. Y.H. Wang, Y.Y. Zuo and H. Gao, "Luminescence properties of nanocrystalline $YVO_4$ : $Eu^{3+}$ under UV and VUV excitation", Mater. Res. Bull. 41 (2006) 2147. https://doi.org/10.1016/j.materresbull.2006.03.034
  7. L.P. Li, M.L. Zhao, W.M. Tong, X.F. Guan, G.S. Li and L.S. Yang, "Preparation of cereal-like $YVO_4$ : $Ln^{3+}$ (Ln=Sm, Eu, Tb, Dy) for high quantum efficiency photoluminescence", Nanotechnology 21 (2010) 19.
  8. Y.H. Zhou and J. Lin, "Morphology control and luminescence properties of $YVO_4$ : Eu phosphors prepared by spray pyrolysis", Opt. Mater. 27 (2005) 1426. https://doi.org/10.1016/j.optmat.2004.10.006
  9. S.M. Hwang, J.B. Lee, S.H. Kim and J.H. Ryu, "A review on inorganic phosphor materials for white LEDs", J. Korean Cryst. Growth Cryst. Technol. 20 (2012) 233.
  10. Z.Y. Hou, P.P. Yang, C.X. Li, L.L. Wang, H.Z. Lian, Z.W. Quan and J. Lin, "Preparation and luminescence properties of $YVO_4$ : Ln and $Y(V, P)O_4$ : Ln (Ln=$Eu^{3+}$, $Sm^{3+}$, $Dy^{3+}$) nanofibers and microbelts by sol-gel/electrospinning process", Chem. Mater. 20 (2008) 6686. https://doi.org/10.1021/cm801538t
  11. X.C. Wu, Y.R. Tao, C.Y. Song, C.J. Mao, L. Dong and J.J. Zhu, "Morphological control and luminescent properties of $YVO_4$ : Eu nanocrystals", J. Phys. Chem. B 110 (2006) 15791. https://doi.org/10.1021/jp060527j
  12. A. Huignard, V. Buissette, G. Laurent, T. Gacoin and J.P. Boilot, "Synthesis and characterizations of $YVO_4$ : Eu colloids", Chem. Mater. 14 (2002) 2264. https://doi.org/10.1021/cm011263a
  13. M.H. Lee, S.G. Oh and S.C. Yi, "Preparation of Eudoped $Y_2O_3$ luminescent nanoparticles in nonionic reverse microemulsions", J. Colloid Interface Sci. 226 (2000) 65. https://doi.org/10.1006/jcis.2000.6811
  14. N. Vu, T.K. Anh, G.C. Yi and W. Strek, "Photoluminescence and cathodoluminescence properties of $Y_2O_3$ : Eu nanophosphors prepared by combustion synthesis", J. Lumin. 122-123 (2007) 776. https://doi.org/10.1016/j.jlumin.2006.01.286
  15. A. Konrad, T. Fries, A. Gahn, F. Kummer, U. Herr, R. Tidecks and K. Samwer, "Chemical vapor synthesis and luminescence properties of nanocrystalline cubic $Y_2O_3$ : Eu", J. Appl. Phys. 86 (1999) 3129. https://doi.org/10.1063/1.371177
  16. G. Chadeyron, R. Mahiou, M. EL-Ghozzi, A. Arbus, D. Zambon and J.C. Cousseins, "Luminescence of the orthoborate $YBO_3$ : $Eu^{3+}$", J. Lumin. 564 (1997) 72.
  17. J.H. Seo, M.Y. Lee and J.S. Kim "Radio-frequency thermal plasma preparation of nano-sized Ni catalysts supported on MgO nano-rods for partial oxidation of methane", Surf. Coat. Technol. 228 (2013) 91. https://doi.org/10.1016/j.surfcoat.2012.08.020
  18. Z. Karoly, I. Mohai, Sz. Klebert, A. Keszler, I.E. Sajo and J. Szepvolgyi, "Synthesis of SiC powder by RF plasma technique", Powder Technol. 214 (2011) 300. https://doi.org/10.1016/j.powtec.2011.08.027
  19. Y.H. Chung, S.T. Park, K.W. Jang, Y.I. Lee and H.J. Seo, "Optical properties and crystal structure of $Eu^{3+}$-doped $Y_2O_3$ crystals prepared under different conditions and with different methods", J. Korean Phys. Soc. 42 (2003) 543.
  20. Y.D. Jiang, Z.L. Wang, F. Zhang, H.G. Paris and C.J. Summers, "Synthesis and characterization of $Y_2O_3$ : $Eu^{3+}$ phosphor by a hydrolysis technique", J. Mater. Res. 13 (1998) 2950. https://doi.org/10.1557/JMR.1998.0403
  21. Y.H. Kim and J.Y. Kim, "Photoluminescent properties of red phosphor $(Y,Gd)_2O_2$ : Eu for plasma display panel synthesized by homogeneous precipitation method", J. Korean Cryst. Growth Cryst. Technol. 10 (2000) 400.