References
- Akpe, M. E., P. E. Waibel, K. Larntz, A. L. Metz, S. L. Noll, and M. M. Walser. 1987. Phosphorous availability bioassay using bone ash and bone densitometry as response criteria. Poult. Sci. 66:713-720. https://doi.org/10.3382/ps.0660713
- Amaro, H. M., A. C. Guedes, and F. X. Malcata. 2011. Antimicrobial activities of microalgae: An invited review. Sci. against Microbial Pathogens: Communicating Current Research and Technological Advances 3:1272-1284.
- Bouton, P. E., P. V. Harris, and W. R. Shorthose. 1971. Effect of ultimate pH upon the water-holding capacity and tenderness of mutton. J. Food Sci. 36:435-439. https://doi.org/10.1111/j.1365-2621.1971.tb06382.x
- Buckenhuskes, H., H. A. Jensen, R. Andersson, A. G. Fernandez, and M. Rodrigo. 1990. Fermented vegetables. In: Processing and Quality of Foods in Food Biotechnology (Eds. P. Zeuthen, J. C. Cheftel, C. Eriksson, T. R. Gormley, P. Linko, and K. Paulus): Avenues to Healthy and Nutritious Products. Elsevier, London, UK.
- Castaneda, M. P., E. M. Hirschler, and A. R. Sams. 2005. Skin pigmentation evaluation in broilers fed natural and synthetic pigments. Poult. Sci. 84:143-147. https://doi.org/10.1093/ps/84.1.143
- Crenshaw, T. D., E. R. Peo Jr, A. J. Lewis, and B. D. Moser. 1981. Bone strength as a trait for assessing mineralization in swine:A critique of techniques involved. J. Anim. Sci. 53:827-835.
- Garlich, J., C. Morris, and J. Brake. 1982. External bone volume, ash, and fat-free dry weight of femurs of laying hens fed diets deficient or adequate in phosphorus. Poult. Sci. 61:1003-1006. https://doi.org/10.3382/ps.0611003
- Grau, R. and R. Hamm. 1953. A simple method for the determination of water binding in muscles. Naturwissenschaften 40:29-30. https://doi.org/10.1007/BF00595734
- Janczyk, P., B. Halle, and W. B. Souffrant. 2009. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris. Poult. Sci. 88:2324-2332. https://doi.org/10.3382/ps.2009-00250
- Kang, M. S., H. J. Chae, and S. J. Sim, 2004. Chlorella as a functional biomaterial. Korean J. Biotechnol. Bioeng. 19:1-11.
- Kay, R. A. and L. L. Barton. 1991. Microalgae as food and supplement. Crit. Rev. Food. Sci. Nutr. 30:555-573. https://doi.org/10.1080/10408399109527556
- Keijiro, U. 2011. Method for producing Chlorella fermented food. United States Patent No.7914832B2.
- Kim, K. E. 2011. Study on Dietary Effect of Chlorella vulgaris on Productivity and Immune Response in Poultry and Post Weaned Pigs. Ph. D. Thesis, Konkuk University, Seoul, Korea.
- Kim, Y. H., Y. K. Hwang, S. M. Ko, J. M. Hwang, H. K. Seong, and D. U. Kim. 2002. An effect of dietary chlorella on bone mineral density in postmenopausal women. J. Biomed. Lab. Sci. 8:217-221.
- Korea duck association. 2012. Duck statistics. http://www.koreaduck.org/index.asp. Accessed March 3, 2014.
- Korean Feeding Standard for Poultry. 2012. National Institute of Animal Science, RDA, Suwon, Korea.
- Kotrbacek, V., R. Halouzka, V. Jurajda, Z. Knotkava, and J. Filka. 1994. Increased immune response in broilers after administration of natural food supplements. Vet. Med. (Praha) 39:321-328.
- Miller, T. L. and M. J. Wolin. 1974. A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl. Environ. Microbiol. 27:985-987.
- National Research Council. 1994. Nutrient Requirement of Poultry. 9th revised edition. National Academic Press, Washington, DC, USA.
- Park, K. K., H. Y. Park, Y. C. Jung, E. S. Lee, S. Y. Yang, B. S. Im, and C. J. Kim. 2005. Effects of fermented food waste feeds on pork carcass and meat quality properties. Korean J. Food Sci. Technol. 37:38-43.
- Pratt, R., T. C. Daniels, J. J. Eiler, J. B. Gunnison, W. D. Kumler, J. F. Oneto, and H. H. Strain. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99:351-352. https://doi.org/10.1126/science.99.2574.351
- SAS. 2002. SAS User's Guide (Release 9.2): Statistics SAS Inst. Inc,. Cary NC, USA.
- Shelef, G. and C. J. Soeder. 1980. Algae Biomass: Production and Use. Elsevier/North-Holland Biomedical Press. Amsterdam, The Netherlands. pp. 25-33.
- Tuohy, K. M., C. J. Ziemer, A. Klinder, Y. Knobel, B. L. Pool-Zobel, and G. R. Gibson. 2002. A human volunteer study to determine the probiotic effects of lactulose powder on human colonic microbiota. Microb. Ecol. Health Dis. 14:165-173. https://doi.org/10.1080/089106002320644357
- Watkins, K. L. and L. L. Southern. 1992. Effect of dietary sodium zeolite A and graded levels of calcium and phosphorous on growth, plasma, and tibia characteristics of chicks. Poult. Sci. 71:1048-1058. https://doi.org/10.3382/ps.0711048
- Yan, L., S. U. Lim, and I. H. Kim. 2012. Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian Australas. J. Anim. Sci. 25:1742-1747. https://doi.org/10.5713/ajas.2012.12352
-
Zheng, L., S. T. Oh, J. Y. Jeon, B. H. Moon, H. S. Kwon, S. U. Lim, B. K. An and C. W. Kang. 2012. The dietary effects of fermented Chlorella vulgaris (CBT
$^{(R)}$ ) on production performance, liver lipids and intestinal microflora in laying hens. Asian Australas. J. Anim. Sci. 25:261-266. https://doi.org/10.5713/ajas.2011.11273
Cited by
- Effect of provitamin A biofortified maize inclusion on quality of meat from indigenous chickens vol.25, pp.4, 2016, https://doi.org/10.3382/japr/pfw040
- Effects of Inclusion of Fermented Carrageenan By-products in the Basal Diet of Broiler Chickens on Growth Performance, Blood Profiles and Meat Composition vol.16, pp.5, 2017, https://doi.org/10.3923/ijps.2017.209.214
- Carcass composition and selected meat quality traits of Pekin ducks from genetic resources flocks pp.1525-3171, 2019, https://doi.org/10.3382/ps/pez073
- Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens vol.5, pp.1, 2015, https://doi.org/10.1186/s40064-016-2373-4
- Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata) vol.96, pp.9, 2015, https://doi.org/10.3382/ps/pex147
- Effects of dietary Corynebacterium ammoniagenes-derived single cell protein on growth performance, blood and tibia bone characteristics, and meat quality of broiler chickens vol.27, pp.2, 2015, https://doi.org/10.22358/jafs/91966/2018
- Digestive tract morphometry and breast muscle microstructure in spent breeder ducks maintainedin a conservation programme of genetic resources vol.61, pp.3, 2015, https://doi.org/10.5194/aab-61-373-2018
- THE EFFECT OF GROWING CONDITIONS ON THE QUALITATIVE AND QUANTITATIVE INDICATORS OF CHLORELLA VULGARIS vol.2019, pp.4, 2015, https://doi.org/10.14258/jcprm.2019045130
- Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review vol.17, pp.6, 2015, https://doi.org/10.3390/md17060312
- The application of the microalgae Chlorella spp. as a supplement in broiler feed vol.75, pp.2, 2015, https://doi.org/10.1017/s0043933919000047
- Impacts of Enriching Growing Rabbit Diets with Chlorella vulgaris Microalgae on Growth, Blood Variables, Carcass Traits, Immunological and Antioxidant Indices vol.9, pp.10, 2015, https://doi.org/10.3390/ani9100788
- Growth performance, carcass composition, leg bones, and digestive system characteristics in Pekin duck broilers fed a diet diluted with whole wheat grain vol.99, pp.4, 2015, https://doi.org/10.1139/cjas-2018-0164
- Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria vol.9, pp.7, 2020, https://doi.org/10.3390/foods9070959
- A High Dietary Incorporation Level of Chlorella vulgaris Improves the Nutritional Value of Pork Fat without Impairing the Performance of Finishing Pigs vol.10, pp.12, 2015, https://doi.org/10.3390/ani10122384
- Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: Current status, challenges and future perspectives vol.342, pp.None, 2021, https://doi.org/10.1016/j.biortech.2021.126018
- Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat vol.10, pp.12, 2015, https://doi.org/10.3390/foods10122933