DOI QR코드

DOI QR Code

Proper NMR methods for studying RNA thermometers

  • Kim, Won-Je (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Nak-Kyoon (Advanced Analysis Center, Korea Institute of Science and Technology)
  • Received : 2015.09.20
  • Accepted : 2015.11.22
  • Published : 2015.12.20

Abstract

In some pathogenic bacteria, there are RNA thermometers, which regulate the production of virulence associated factors or heat shock proteins depending on temperature changes. Like a riboswitches, RNA thermometers are located in the 5'-untranslated region and involved translational gene regulatory mechanism. RNA thermometers block the ribosome-binding site and start codon area under the $37^{\circ}C$ within their secondary structure. After bacterial infection, increased the temperature in the host causes conformations changes of RNA, and the ribosome-binding site is exposed for translational initiation. Because structural differences between open and closed forms of RNA thermometers are mainly mediated by base pairing changes, NMR spectroscopy is a very useful method to study these thermodynamically changing RNA structure. In this review, we briefly provide a fundamental function of RNA thermometers, and also suggest a proper NMR experiments for studying RNA thermometers.

Keywords

References

  1. P.A. Sharp, Cell 136, 577 (2009) https://doi.org/10.1016/j.cell.2009.02.007
  2. Y. Wan, M. Kertesz, R.C. Spitale, Nat. Rev. Genet. 12, 641 (2011) https://doi.org/10.1038/nrg3049
  3. S.A. Mortimer, M.A. Kidwell, and J.A. Doudna, Nat. Rev. Genet. 15, 469 (2014) https://doi.org/10.1038/nrg3681
  4. W.C. Winkler and R.R. Breaker, Annual Review of Microbiology 59, 487 (2005) https://doi.org/10.1146/annurev.micro.59.030804.121336
  5. A. Peselis and A. Serganov, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1839, 908 (2014) https://doi.org/10.1016/j.bbagrm.2014.02.012
  6. F. Narberhaus, T. Waldminghaus, and S. Chowdhury, FEMS Microbiology Reviews 30, 3 (2006) https://doi.org/10.1111/j.1574-6976.2005.004.x
  7. S. Chowdhury, C. Maris, F.H.T. Allain, and F. Narberhaus, The EMBO Journal 25, 2487 (2006) https://doi.org/10.1038/sj.emboj.7601128
  8. M.V. Grosso-Becera, L. Servin-Gonzalez, and G. Soberon-Chavez, Trends in Microbiology 23, 509 (2015) https://doi.org/10.1016/j.tim.2015.04.004
  9. K.L. Meibom, I. Dubail, M. Dupuis, Mol. Microbiol. 67, 1384 (2008) https://doi.org/10.1111/j.1365-2958.2008.06139.x
  10. W. Schumann, Journal of biosciences 32, 549 (2007) https://doi.org/10.1007/s12038-007-0054-8
  11. M.E. Konkel and K. Tilly, Microbes and Infection 2, 157 (2000) https://doi.org/10.1016/S1286-4579(00)00272-0
  12. J. Rinnenthal, B. Klinkert, F. Narberhaus, and H. Schwalbe, Nucleic Acids Res. 38, 3834 (2010) https://doi.org/10.1093/nar/gkq124
  13. J. Rinnenthal, B. Klinkert, F. Narberhaus, and H. Schwalbe, Nucleic Acids Res. gkr314 (2011)
  14. D. Wagner, J. Rinnenthal, F. Narberhaus, and H. Schwalbe, Nucleic Acids Res. gkv414 (2015)
  15. T. Waldminghaus, L. Gaubig, and F. Narberhaus, Mol. Genet. Genomics 278, 555 (2007) https://doi.org/10.1007/s00438-007-0272-7
  16. A. Hoynes-O'Connor, K. Hinman, L. Kirchner, and T.S. Moon, Nucleic Acids Res. gkv499 (2015)
  17. F. Righetti and F. Narberhaus, Frontiers in cellular and infection microbiology 4 (2014)
  18. N.-K. Kim, Y.-S. Nam, and K.-B. Lee, J. Kor. Mag. Reson. Soc. 18, 5 (2014) https://doi.org/10.6564/JKMRS.2014.18.1.005
  19. S.J. Park, J. Kor. Mag. Reson. Soc. 18, 47 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.047
  20. B. Furtig, C. Richter, J. Wohnert, and H. Schwalbe, Chembiochem. 4, 936 (2003) https://doi.org/10.1002/cbic.200300700
  21. K. Wuthrich, NMR of proteins and nucleic acids 1986: Wiley.
  22. G. Varani and I. Tinoco, Quarterly reviews of biophysics 24, 479 (1991) https://doi.org/10.1017/S0033583500003875
  23. A.J. Dingley and S. Grzesiek, J. Am. Chem. Soc. 120, 8293 (1998) https://doi.org/10.1021/ja981513x
  24. K. Pervushin, A. Ono, C. Fernandez, Proceedings of the National Academy of Sciences 95, 14147 (1998) https://doi.org/10.1073/pnas.95.24.14147
  25. C.D. Eichhorn, S. Yang, and H.M. Al-Hashimi, Recent developments in biomolecular NMR 25, 184 (2012)
  26. H. Takahashi, T. Nakanishi, K. Kami, Nature Structural & Molecular Biology 7, 220 (2000) https://doi.org/10.1038/73331
  27. J. Kortmann, S. Sczodrok, J. Rinnenthal, Nucleic Acids Res. gkq1252 (2010)

Cited by

  1. Structural Characterization of pre-miRNA 155 vol.20, pp.2, 2016, https://doi.org/10.6564/JKMRS.2016.20.2.046