Abstract
Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.
Compressive sensing 및 희소 복원 문제(sparse recovery problem)는 기존 디지털 기술의 한계를 극복할 수 있는 새로운 이론으로 많은 관심을 받고 있다. 그러나 신호 재구성에서 l1 norm 최적화 문제 해결에 많은 연산이 수행되며 따라서 병렬 처리 기법이 필요하다. 이 과정에서 무작위 행렬과 벡터 연산을 통한 변환 연산이 전체 과정 중에서 많은 부분을 차지하는데, 특히 원본 신호의 크기로 인해 이 과정에서 필요한 무작위 행렬을 메모리에 저장하기 곤란하며 계산 시 무작위 행렬의 절차적(procedural) 처리 방식이 필수적이다. 본 논문에서는 이 문제에 대한 해결책으로 단일 명령 다중 스레드(SIMT) 병렬 플랫폼 상에서 무작위 부분적 Haar 웨이블릿 변환을 절차적으로 계산할 수 있는 새로운 병렬 알고리듬을 제안한다.