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ABSTRACT 

This note is concerned with the use of incomplete weights in multiple criteria decision making. In an earlier study, an 
optimistic use of incomplete weights is developed to prioritize decision alternatives, which applies the most favorable 
set of weights to the alternative to be evaluated. In this note, we develop a method for a pessimistic use, thereby ap-
plying the least favorable weight set to the evaluated alternative. This development makes possible a more detailed 
prioritization of competing alternatives, and hence enhances decision-making powers. 
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1.  INTRODUCTION 

In multiple criteria decision making (MCDM), there 
have been a sizable number of methods to deal with in-
complete weights, such as ordinal and bounded forms of 
relative importance on evaluation criteria, which frequen-
tly appear in practical decision-making (Kmietowiz and 
Pearman, 1984; Weber, 1987; Park, 2004). In this note, 
we revisit the recent developments by Park and Shin 
(2011) and Park and Cho (2011). Common to these two 
papers is to develop a most optimistic approach to the 
evaluation of decision alternatives involving incomplete 
weights, so it applies the most favorable set of weights 
among various feasible weights to the alternative to be 
evaluated. This development was based on extensions to 
the micro-economic evaluation concept of Debreu (1951) 
and Farrell (1957). 

In this note, we develop a most pessimistic approach, 
which applies the least favorable set of weights to the 
evaluated alternative. It is worth mentioning that the pre-
vious optimistic approach tends to render two or more 
alternatives efficient or non-dominated (Park, 2004; Park 
and Shin, 2011). Thus it is difficult to choose a single 
best alternative or rank-order those competing alterna-

tives. The current pessimistic approach helps to overcome 
this difficulty, because it makes possible a more detailed 
prioritization of such competing alternatives. 

In the next section, the optimistic approach is briefly 
described. We then develop the pessimistic approach, 
followed by an illustration along with graphical interpre-
tations. 

2.  OPTIMISTIC APPROACH 

Let there be n alternatives X = {x1, …, xn}, each of 
which is described by a vector x = (x1, …, xp) of conse-
quences on each criterion j = 1, …, p. Let w = (w1, …, 
wp)

T be the vector of weights wj. The point is that a set 
of exact weights cannot be identified in many situations 
(Park, 2004). We may frequently have incomplete weights, 
such as ordinal information (w1 ≥ w2 ≥ … ≥ wp) and/or 
ratio bounds (c− ≤ wk/wj ≤ c+, where c− and c+ respec-
tively are the lower and upper bounds) on the marginal 
rate of substitution for the two criteria k and j. We can 
therefore assume that the set of admissible weights W is 
specified by a system of homogeneous linear inequali-
ties, W = {w|Aw ≤ 0, w ≥ 0}, where A is a q×p matrix 
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composed of q row vectors a1, …, aq. 
To measure the optimistic score of alternative xo, 

the following linear program has previously been devel-
oped: 

 
αo = max α    (1) 

subject to 

T
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n q
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where α ≥ 1. A smaller αo value is better, and hence the 
xo alternatives having αo = 1 become efficient. Note that 
αo is obtained from an assessment in the light of the 
most favorable weight scenario for xo. 

3.  PESSIMISTIC APPROACH 

To begin with, we analyze model (1). The feasible 
region of model (1) can compactly be represented by α 
xo∈Ω(X, A) = C(X) + F(A),where 
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The C(X) set is the convex hull of X, and the F(A) set is 
a convex polyhedral cone and the polar cone of W. The 
points ak

T can be thought of as the generaters of F(A), 
and each of them generates a half-ray, Hk = tkak

T with tk 
≥ 0.The key observation is that these half-rays are the 
determinant of the optimistic score αo. That is, model (1) 
selects at least one Hk that represents the efficient facet 
of xo, and then compares the efficient facet and xo, there 
by yielding αo. This observation implies that αo is ob-
tained from the limited sources of efficient frontier, half-
rays Hk, which are formed by the favorable weight sce-
narios for xo. 

To measure a pessimistic score, we therefore allow 
the unfavorable weight scenarios for xo. This leads us to 
consider rays, Rk = tkak

T with tk to be sign free, which 
expands the limited efficient frontier used for measuring 
αo. We then need to select one of the rays Rk that evalu-
ates alternative xo most pessimistically. This idea can be 
generalized in the following form of linear programs: 
For each r = 1, …, q, 

 
βr = max β    (5) 

subject to 

T
1 1

n q
i i k k oi k tμ β

= =
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Solving these q linear programs, we can obtain the pes-
simistic score of xo, βo = max {β1, …, βq}.The only 
difference between models (1) and (2) is that tris sign 
free in (2). 

4.  ILLUSTRATIVE EXAMPLE 

Suppose that we have five alternatives under eva-
luation as shown in Table 1. In this evaluation, we as-
sume incomplete weight information, 1 ≤ w2/w1 ≤ 3. We 
then have 

1

2

1 1

3 1
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A
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First, using model (1), we evaluate x1 = (2, 5) op-
timistically as follows: 

 
αo = max α subject to 

1 2 3 4 5 1 22 5 3 1 4 1 3 2t tμ μ μ μ μ α+ + + + + − ≥  

1 2 3 4 5 1 25 2 3 5 1 1 1 5t tμ μ μ μ μ α+ + + + − + ≥  

1 2 3 4 5 1μ μ μ μ μ+ + + + =  

 
with all variables to be nonnegative. Solving this we 
have αo = 1. Carrying out this task for the other alterna-
tives, we obtain all the optimistic scores in Table 1. As 
can be seen, alternatives x1 and x2 appear to be efficient. 

 
Table 1. An Example for Evaluating Five Alternatives 

under Two Criteria 

Alternatives x1 x2 x3 x4 x5 
x1 2 5 3 1 4 

Data 
x2 5 2 3 5 1 

Optimistic αo 1 1 1.17 1.06 1.40
Pessimistic βo 1 1.55 1.42 1.17 2.43

 
Now using model (2), we evaluate x1 = (2, 5) pes-

simistically as follows: 
 
β1 = max β subject to 

1 2 3 4 5 1 22 5 3 1 4 1 3 2t tμ μ μ μ μ β+ + + + + − ≥  

1 2 3 4 5 1 25 2 3 5 1 1 1 5t tμ μ μ μ μ β+ + + + − + ≥  

1 2 3 4 5 1μ μ μ μ μ+ + + + =  

1 freet  

 
with all variables to be nonnegative except for β and t1. 
Solving this we have β1 = 1. Now replacing β1 and t1 
free respectively with β2 and t2 free in the immediately 
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above problem, we then have β2 = 1. Thus, the pessimis-
tic score of x1 becomes βo = 1 = max {1, 1}. Carrying 
out these operations on the other alternatives, we 
achieve the last row of Table 1. Only x1 becomes effi-
cient, and x2, which was efficient under the optimistic 
evaluation, now turns out to be inefficient. Therefore, 
the choice-making of a single best alternative succeeds 
in this example. 

Moreover, having obtained both optimistic and 
pessimistic scores, we can provide a more informative 
evaluation result. We can classify alternatives into three 
categories: When αo = βo = 1, this alternative is the best 
performer because it is always efficient, meaning that it 
is efficient under both optimistic and pessimistic evalua-
tions (x1 is the case in the above example). When αo = 1 
but βo > 1, this alternative is the second best performer 
because it is sometimes efficient (x2 is the case). When 
αo> 1 and βo > 1, this alternative is the least performer 
because it is always inefficient. 

Finally, we provide graphical interpretations of 
models (1) and (2). For model (1), Figure 1 shows how 
the set Ω(X, A) = C(X) + F(A) is constructed on the left, 
and the resulting value efficient frontier on the right. As 
an example, the optimistic score of x3 is the ratio d(0, 
x3′)/d(0, x3) which was 1.17 in Table 1. Here, d is the 
Euclidean distance function. It is obvious that the opti-
mistic scores of x1 and x2 are all unity. 
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Figure 1. Graphical Interpretation of the Optimistic 

Evaluation 
 
Figure 2 shows a graphical interpretation of model 

(2). We have two rays R1 and R2. The R1 that is associ-
ated with a1 = (1, −1) serves a value efficient frontier, 
when we use the weights satisfying w2/w1 = 1 that is 
feasible for the given weights 1 ≤ w2/w1 ≤ 3. The R2 di-
rects to a2 = (−3, 1), corresponding to the feasible wei-
ghts satisfying w2/w1 = 3. Now consider alternative x3. 
One performance score is the ratio d(0, x3

1)/d(0, x3) when  
 

using R1. Another is d(0, x3
2)/d(0, x3) when using R2. 

The maximum of the two values becomes the pessimis-
tic score of x3, which is d(0, x3

2)/d(0, x3). It is apparent 
that only x1 is efficient. 
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Figure 2. Graphical Interpretation of the Pessimistic 

Evaluation  
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