
http://dx.doi.org/10.7737/JKORMS.2015.40.3.023

논문접수일：2015년 07월 24일 논문게재확정일：2015년 07월 30일

* This work was supported by 2012 Hongik University Research Fund.

†교신저자, khchung@hongik.ac.kr

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한

Cutting Planes의 전산 성능 연구*

정 광 헌
†

홍익대학교 경영대학

Computational Study of Cutting Planes for a Lot-Sizing

Problem in Branch-and-Cut Algorithm

Kwanghun Chung

College of Business Administration, Hongik University

Abstract

In this paper, we evaluate the strength of three families of cutting planes for a lot-sizing problem. Lot-sizing problem

is very basic MIP model for production planning and many strong valid inequalities have been developed for a variety

of relaxations in the literature. To use three families of cutting planes in Branch-and-Cut framework, we develop sepa-

ration algorithms for each cut and implement them in CPLEX. Then, we perform computational study to compare the

effectiveness of three cuts for randomly generated instances of the lot-sizing problem.

Keywords：Mixed-Integer Programming (MIP), Branch-and-Cut, Lot-Sizing Problem,

Separation

1. Introduction

Branch-and-Bound is a general method to solve

mixed-integer programming (MIP) problems and

widely used in MIP solvers such as CPLEX, Gu

RoBi, and Xpress. However, since LP relaxations

are typically weak for real problems, the number

of nodes in Branch-and-Bound tree may grow

한국경영과학회지
제40권 제3호
2015년 8월

24 정 광 헌

exponentially and the computing time to the opti-

mality becomes quite so long. In this case, valid

inequalities can play a critical role to improve the

performance by adding them to the original for-

mulation and tightening the LP relaxation. The

combined approach of branch-and-bound and cut-

ting planes are called as Branch-and-Cut (BC)

algorithm. While many cutting planes which are

either general purpose or problem-dependent have

been developed in the literature, the use of a spe-

cific cut is not so simple since we have to sepa-

rate the most violated cut for a given fractional

LP solution. This is called as a separation prob-

lem that affects the performance of the Branch-

and-Cut algorithm.

The aim of this paper is to compare the effec-

tiveness of different kinds of cuts in Branch-and-

Cut algorithm. For that purpose, we consider a

lot-sizing problem for which many strong valid

inequalities have been developed. We study three

families of cuts and develop separation algorithms

for them. Then, we evaluate the strength of three

cuts through the computational study.

1.1 Lot-Sizing Problem and MIP Formulation

In this paper, we consider a variant of the lot-

sizing problem. A company wants to decide on a

production plan for a set of items  ⋯ 

over time periods    ⋯  . It needs to satisfy

a demand for item ∈ in period ∈. In or-
der to produce these items, a set of different ma-

chines   ⋯  is used. The time required

to produce one unit of item k on machine m is

given by  for ∈ and ∈ . Further, in

order to produce any number of item k on machine

m, the machine must be properly configured, which

takes a fixed setup time  for ∈ and ∈ .

There is a limited amount of processing time 

available on each machine ∈ in every time

period ∈. The variable production cost for
item k in period t is given by . The variable

cost for holding one unit of item k in inventory at

the end of period t is given by . Finally, the

fixed cost for the production of item k in period t

is given by .

One of the possible MIP formulations for this

problem is given below. We first define the deci-

sion variables as follows：

  Number of items  produced in period t

on mahcine m

  1 if item k is produced on machine m in

period t, 0 otherwise

  Number of items k produced in period t

  1 if item k is produced in period t, 0

otherwise

Using these variables, we establish the follow-

ing model.

  
∈∈


∈∈

 
∈∈




 





 ≥




∀∈ ∀∈ (1)

(P)  ≤ 
  ∀∈ ∀∈ (2)

  ≤ ∀∈ ∀∈ (3)

 ∀∈
 

∈
 

∈
 ≤  (4)

 ∀∈ ∀∈
   

∈
 ∀∈∀∈ (5)

 ∈  ∈ ∀∈ (6)

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 25

 ∀∈∀∈
  ≥   ≥ ∀∈ ∀∈ (7)

where 
 





.

Demand constraints (1) make sure that demand

is satisfied without backlogging. Setup constra-

ints (2) and (3) enforce binary variable ()

to be set to 1 in case item k is produced (on ma-

chine m) in period t. Capacity constraints (4) re-

quire that the processing time for production

must not exceed the capacity of each machine m

in every period t. Finally, constraints (5) say that

item k can be produced on different machines.

The objective of this problem is to minimize

the sum of variable production costs, setup costs,

and inventory holding costs over the planning

horizon. Regarding the value of  in constra-

ints (3), we used the implicit upper bounds ob-

tained from constraints (4), i.e.,

 ⌈
 ⌉ for ∀∈∀∈.

1.2 Branch-and-Cut Algorithm

Branch-and-Bound algorithm is the basic and

general method that has been used to solve MIPs.

First, a relaxation of the MIP (P) which is an LP

relaxation in general is solved to obtain the bounds.

Denote by  the optimal solution of the LP re-

laxation in a node V. Further, let I be the set of

integer variables. If 
 for all ∈ is integral,

then an optimal solution of (P) has been found and

Branch-and-Bound algorithm terminates. Other-

wise, we divide or partition the feasible region into

two smaller partitions  ∩   ≤⌊⌋
and  ∩   ≥⌈⌉ where  for ∈

is a currently fractional variable. Then, we add

two subproblems  and  to the problem list L

and solve each subproblem recursively until L is

empty or some termination criteria are satisfied.

Cutting planes can be used inside of a Branch-

and-Bound algorithm to strengthen the LP relax-

ations which help speed up the Branch-and-Bound

search. This mixed use of strong cutting and

branching is known as Branch-and-Cut algorithm,

which we are considering to solve the lot-sizing

problem (P) in this paper. We summarize the

general Branch-and-Cut procedure in Algorithm

1 as shown below.

Algorithm 1：Branch-and-Cut Algorithm

Input：P, I

Output： 

Initialization

  ← ←∅ ←∞
while  ≠∅ do
 Check termination criteria
 Update list L

 if  ≥  for ∈ then
  ←╲
 end
 Node Selection
 Select ∈ and let  ←╲
 while Cut Generation needs to be performed do

 Obtain  and  by solving LP over V
 Pruning
 by Infeasibility： ∅

 by Bounds：≥ 

 by Integrality

 if   then

 if 
∈ℤ for all ∈ then

 Update upper bound：←

 Update incumbent solution：←

 end
 end
 Call Primal Heuristics
 Call Cut Generation
 if ∃ a violated cut then
 add to the formulation
 end
 end
 Branching
end

26 정 광 헌

When we apply a Branch-and-Cut algorithm to

solve the MIP (P), we have to define and imple-

ment each subroutine in detail. For example, in

order to add some cuts in branch-and-bound

search, Cut Generation routine that we will dis-

cuss in Section 2 should be clearly clarified. To

improve the speed of branch-and-bound search,

we also describe one of the ideas to develop Pri-

mal Heuristics in Section 3.

Throughout the paper, some algorithmic decisions

on other subroutines are made as follows;

•Termination criteria：Branch-and-Cut algorithm

can be stopped by specifying a maximum num-

ber of nodes and maximum solution time. It is

also terminated when the optimality gap is less

than the given optimality criteria.

•Node selection：Among many node selection

rules, we pick from the list L a node V which

has the best bound.

•Branching：we choose as a branching variable

the fractional integer variable with highest ob-

jective coefficient value.

The remaining of the paper is organized as

follows. In Section 2, we consider three families

of strong valid inequalities for the problem (P)

and discuss how to separate the violated cut in

the branch-and-bound search. Detailed separation

algorithms for each cut are presented and some

implementation details are given in Section 4. To

improve the branch-and-bound search, we also

develop primal heuristics that are described in

Section 3. We perform the computational study

for three cuts and present the numerical results

in Section 4. Finally in Section 5, we conclude

with remarks and direction of future research.

2 Cutting Planes

In this section, we study three families of cut-

ting planes that can be applied to the lot-sizing

problem (P). We also develop separation algorithms

to add the original formulation in branch-and-

bound processes. For each family of cuts, we now

describe exact or heuristic algorithms to separate

a violated cut from many valid inequalities.

2.1 (l, S) Inequalities

Consider first the set   defined by the con-

straints (1) and (2)：

  ∈×  
 




 ≥




∀ ∈ ∀∈
  ≤ 

  ∀∈∀∈
  ≥ ,

   

When we drop off the constraints (3)～(5) from

the original model (P), we obtain , which is a

traditional incapacitated lot-sizing problem. Clearly,

 is indeed a relaxation of (P). Barany et al.

[4] introduced (l, S) inequalities and proved the

following theorem.

Theorem 1：For given ∈  ⋯,
 ⊆  ⋯  and  ╲ ,

(l, S) inequalities

 
∈
 

∈

 ≥ 



are facet-defining for the convex hull of .

Further they also show that (l, S) inequalities

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 27

provide complete description of the convex hull of

.

Since this family of inequalities are exponentially

many due to the selection of (l, S), we need to

solve the separation problem that, for a given

fractional solution  , determines whether

there exists a (l, S) inequality that is violated or

not. In Algorithm 2 below, we describe the exact

separation algorithm in detail. If the separation

algorithm find out violated cuts, we add them to

the formulation (P).

Algorithm 2：Separation Algorithm for   
Inequalities

Input：  

Output：   cuts =     

for    ⋯  do
 for    ⋯  do

 
←

 




  

 
 

 if 
 

 then

  ←⋯   ← ∈      
 if ∈ then
 if ∈ then
 

← 
←

 else

 
← 

←


 end
 else

 
← 

←

 end

 ← 


 end
 end
end

It seems that implementation of Algorithm 2

requires   time. However, we can obtain the

following proposition.

Proposition 1：Algorithm 2 can be implemented

in   .

Proof：Note that ≤ 
 

 ≤ 
 

 ≤ ⋯ ≤

 
 

 . Using bisection, for each ∈ ,
we can find an integer  ∈ ⋯ 
such that  

 
  

 ≤ 
  

 in

 .

2.2 Lifted Mixed Cover Inequalities

Since constraints (4) are 0-1 mixed integer knap-

sack inequalities, we next consider as a relaxation

of (P) a generic 0-1 knapsack polyhedron S of

the form：

  ∈ ×  ∈∈ ≤ 

where   ∀∈,   ∀∈,   and 
≤ ∀∈. If there exists a subset ⊆ sat-
isfying 

∈
  , then we rewrite the knap-

sack constraint as：


∈
 

∈╲
 ≤ 

∈


∈

 (8)

by complementing the continuous variables  for

∈, i.e. by introducing   . Observe now

that S can be relaxed into the set

 ′  ∈ × ∈ ≤  ′ (9)

by relaxing the variables  for ∀∈╲ out
of the problem, by substituting  ′ 

∈
,

by defining a new variable  
∈

 , and by

relaxing the bound of s to be ∞ .

28 정 광 헌

Now, we observe that S' is a 0-1 knapsack

polyhedron with a single continuous variable,

which was studied by Marchand and Wolsey [9].

One of the facet-defining inequalities for the con-

vex hull of S' can be obtained via superadditive

lifting. Assume that ⊆ is a strong cover for

S' with the excess 
∈
 ′ . Further, assume

without loss of generality that  ⋯  and

 ≥  ≥ ⋯ ≥ . Then, Marchand and Wolsey

[9] developed face-defining inequalities for the

convex hull of S' using sequence-independent lift-

ing as shown in the following theorem.

Theorem 2：Lifted cover inequality


∈
  

∈╲
  (10)

 ≤
∈
 

is facet-defining for the convex hull of S' where

 










    ≤  
     ⋯ 

    ≤ 
   ⋯ 

    ≤ 

∈    , and  






for   ⋯.

Since S' is a relaxation of S, we convert (10)

into a valid inequality for S by substituting  


∈

 and

  back, i.e.


∈
  

∈╲
 (11)

 
∈
 ≤

∈
 

∈


Therefore, we can say that (11) is a valid in-

equality for S.

Note that lifted mixed cover inequalities (LMCI)

(11) are also exponentially many since we can

choose in different ways the subset ⊆ and a

strong cover C in (P). We propose and describe a

heuristic separation algorithm in Algorithm 3 below.

In particular, we address the technical issues to

find a subset ⊆ in (8) and a strong cover

⊆ in (9). In order to find the subset J for a

given fractional solution   , we need to mi-

nimize 
∈╲


, i.e.

  
∈



 
∈
 ≥ 

This idea was proposed and shown to be ef-

fective by Marchand and Wolsey [9]. In order to

select J using the exact approach, we have to

solve the knapsack problem：

  
∈




  
∈
  ≤ 

 ∈ ∀∈

However, solving knapsack problem (K1) is

very time-consuming and separation routines are

called over and over in the Branch-and-Bound

search. Further, since our ultimate goal is to find

a violated LMCI, it suffices us to use a greedy

heuristic to solve (K1) using the ratios 




.

After J is determined by the greedy heuristic,

we next find an initial cover C to get LMCI. For

a given fractional solution   , in order to

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 29

find the most violated cover exactly, we have to

solve the following knapsack problem：

   
∈




  
∈
  

 ∈ ∀∈

This is also time-consuming, but here we can

use the coefficient-independent cover generation

approach which was introduced by Gu et al. [8].

Basic idea is to select first the variables with the

highest LP values for the cover C. Let  ∈
  

   and    
∈
. Then, sort the va-

riables in ╲ in non-increasing order of LP

values and add them to C until 
∈
  . Let

  ∪. When the cover C obtained this way

is not a strong cover, we delete the variables

from C to convert it to a strong cover.

After J and C are determined in this way, we

can easily obtain the LMCI (11) with the follow-

ing Algorithm 3 as shown below. However, the

inequality that we obtained may not be a violated

cut since (10) is facet-defining for S', the relaxa-

tion of S, and we find J and C in the heuristic

approach. Therefore, we need to check if the ob-

tained inequality is violated or not at the final

step. Note that Algorithm 3 is not exact but he-

uristic.

2.3 Split Cuts

Since the lot-sizing problem (P) is a 0-1 MIP,

we can use a split cut that is one of the general

cutting planes in MIP. Consider an MIP of the

general form：

Algorithm 3：Separation Heuristics for Lifted Mixed

Cover Inequalities

Input：     

Output：Lifted Mixed Cover cuts =     

Initialization

 ←    ←  

for   ⋯ do

 ←
 





 for    ⋯  do

 Find  ⊆  maximizing 
∈
× 



 subject to 
∈
 ×  

 for   ⋯  do
 if ∈ then
  ← 
 else
  ← 

 end
 end

 ′←
∈
×  ←

∈
 × 

 if   ′ then
 Find a cover  and calculate

   
∈
 ′

 if  ≠   then
 Convert  into a strong cover and

update 
 end
 Find a strong element 
 Sort  in non-increasing order and

  ←∈   
 for   ⋯  do

 Compute ←
 





 end
 for    ⋯  do
 if ∈ then
  ←  
 else
  ← 

 end
 end

 ← 
∈
  

 if 
  

     then

 ←  ←  ←

 end
 end
 end
end

30 정 광 헌

   ′ ′ 
     

    

 ′  ≤ 

     

    

 ′   ≤ 

∈ ∈ ∈ ∈  ∈  ∈ ∈

 ∈×  ≤ 

where A is × matrix, B is × matrix, and

∈  along with a disjunction ′≤ ∨′≥
  where ∈ and ∈. Since variables
x in the set P are integer, it is trivial that ⊆

∪ where

   ∈× 
 ≤   ′ ≥ 

and

   ∈× 
 ≤  ′≥  

Hence, we have that  ⊆ ∪ .

The convex hull of ∪ can be obtained by

disjunctive programming techniques and valid in-

equalities for ∪ are called split cuts.

For a given fractional optimal solution   to

the LP relaxation of P, we can perform the exact

separation that determines if there exists a vio-

lated split cut ≥  from the disjunction

′≤ ∨′≥   by solving the cut gen-
eration linear program (CGLP)：

In order to make sure that (CGLP) does not

become unbounded, we need to add a normal-

ization constraint. We can try

(i) ∈ ,
(ii) 










≤ , or

(iii) ≤ ≤ ,

for ∀  ⋯  and ≤  ≤ ∀  ⋯ .

Since we have seen the unbounded cases when

(i) is used for (P), we impose (iii) in the compu-

tational study due to the ease of implementation.

After solving (CGLP) with the normalization con-

straint, if   , then the corresponding inequal-

ity    is the violated cut for the current LP

solution   and can be added to the for-

mulation (P). Since the separation of split cuts is

exactly performed by solving (CGLP), we always

obtain the split cut whenever   .

However, in order to obtain good split cuts, it

is important to define the right disjunctions for

the lot-sizing problem (P). Note that (P) has only

binary variables v and z. Therefore, we can use

the disjunction  ≤ ∨ ≥ , i.e.,    and 

  for ∈. The split cuts derived from these

disjunctions are called lift-and-project cuts; see

Balas et al. [2]. When implementing the lift-and-

project cuts, we have to decide how many cuts to

generate at a given node. The time needed to ge-

nerate a given number of cuts is usually longer

with many rounds of a few cuts than fewer rounds

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 31

of many cuts because re-optimization is needed

in every round of the cut generation. Hence, we

define the parameter r as the percentage of the

fractional variables. Then, the maximum number

of cuts to be generated is set to

 ⌈ × ⌉

where F is the set of fractional variables in a

node. Detailed steps for obtaining split cuts are

summarized in Algorithm 4.

Algorithm 4：Separation Algorithm for Split Cuts

Input：       
Output：split cuts =    

Initialization

 ←∈   ∉
←⌈ × ⌉
Sort  in the non-increasing order of the fractional
value
for  ⋯   do
 Define a disjunction：←  ←

 Call BuildCGLP

 Solve CGLP and let     be an optimal
solution

 if   then

 ←  ← ←

 end

end

In our computational experiments later, we test

three cases：r = 10%, r = 50%, and r = 100%. The

comparison of these cases are provided in Section 5.

3 Primal Heuristics

While tightening the formulation (P) by using

the cutting planes discussed in Section 3 enables

us to obtain the better lower bound, finding a good

integer feasible solution is also important in a

Branch-and-Bound algorithm. This is because it

provides the upper bound on the objective value

of (P) and ultimately allows to prune more nodes

by the tighter bound.

Typically, there are two types of heuristics：

construction heuristics that produce a feasible

solution from the ground, and improvement heu-

ristics that try to improve a given LP solution.

Since the LP solutions associated with deeper no-

des get closer to be integer solution, we can build

a heuristic approach to convert an optimal sol-

ution to the LP relaxation of a node in the tree to

a good feasible solution to (P). In this section, we

consider two improvement heuristics：Dive-and-

Fix heuristics that can be used for any general

MIP problems and a Time-based Forward heu-

ristics that we developed using characteristics of

the lot-sizing problem (P).

3.1 LP-based Dive-and-Fix vs. RINS-based

Dive-and-Fix

The basic idea of Dive-and-Fix (DF) heuristics

is to take the LP solution at a node of the Branch-

and-Bound tree and dive down the tree in search

for finding a feasible solution. In general, since it

iterates two steps to solve the LP and to fix the

integer variables using the LP solution, this LP-

based DF heuristics performs well with tight LP

formulation. However, since it may not find good

feasible solutions particularly at the early nodes of

the tree, we also try a variant of Dive-and-Fix

heuristics, which we call RINS-based DF heuri-

stics.

While we fix the variables using the LP sol-

ution in LP-based DF, we fix the variables using

the incumbent solution in RINS-based DF. Actu-

ally, the idea of RINS (Relaxation Induced Neigh-

borhood Search) proposed by Danna et al. [6] is

32 정 광 헌

to explore the neighborhood between the LP sol-

ution and the IP solution by solving smaller MIPs

again and again. However, solving small MIPs is

computationally expensive in general, we just

adopt the idea and take the combined approach

that fix first the variables using the incumbent

solution and solve the LP again. We provide two

heuristics in Algorithm 5 as shown below.

Algorithm 5：Dive-and-Fix Heuristics

Input：       

Output：     

Initialization

 ←∈  ∉
while  ≠∅ do

 if  then
 Find the variable closest to integer

  ←∈    
 if 

  then

 fix ⌊⌋ 
 else

 fix  ⌈⌉ 
 end

 else

 ：Fix the variables   
 for all

 ∈ with 
  



 end

 Solve the resulting HeuristicLP：←new

 HeuristicLP solution

 if    then
 STOP

 else

  ←∈  ∉
 end

end

←

3.2 Time-Based Forward Heuristics

Since Dive-and-Fix is a problem-independent

heuristics, it does not use the characteristics of

the lot-sizing problem. We developed a Time-

Based Forward (TBF) heuristics which fixes the

integer variables as time period moves from the

beginning to the end. At each time period, we fix

the values of binary variables z first using the

LP solution and then solve the LP again to find

the feasible solution satisfying all the constraints.

We next fix the values of v since the variables v

depend on the decision of z. We continue to se-

quentially fix the binary variables z and v as the

time moves to the end T. Details are presented in

Algorithm 6.

Algorithm 6：Time-based Forward Heuristics

Input：      

Output：     

Initialization

 ←∈   ∉  ←
while  ≠ ∅  ≤  do
 for    do

 if ≡   then

 Fix first 
 ∀ ∈∀∈

 if 
 ∈ then

   


 else

  ⌈ ⌉ 
 end

 else

 Fix next 
 ∀∈∀∈∀∈

 if 
 ∈ then

   


 else

  ⌈ ⌉ 
 end

 end

 end

 Solve HeuristicLP：←new HeuristicLP

solution

 if    then
 STOP

 else

  ←∈  ∉
 end

  ← 

end

←

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 33

<Table 1> Where to Generate Cuts vs. How Many Cut Rounds for (l, S) cuts

1 round 5 rounds

Cuts Nodes Time(s) # Cuts Nodes Time(s)

Root Node 0.80 45.70 3.22 0.80 45.70 3.46

Node Level ≤ 5 1.20 46.70 4.70 1.20 46.70 4.99

Node Level = 5n 1.00 46.30 3.49 1.00 46.30 3.64

Every Node 1.60 45.50 5.03 1.60 45.50 5.29

One of the disadvantages of the TBF heuristics

is that it may violate the capacity constraints at

the end since early decision may prevent the ge-

neration of a feasible solution later.

4. Computational Study

We now perform a computational study to eva-

luate the strength of three families of cutting planes

for the lot-sizing problem (P). Before we present

the numerical results, we first describe how to

solve (P) under what circumstances. We next de-

scribe how to implement each separation algo-

rithm proposed before in CPLEX. Impacts of three

cuts are compared and the combined use of each

cut is also investigated in Section 4.3. Compari-

son of three heuristics is also presented at the

end of this section.

4.1 Testing Environments

We implement a branch-and-cut algorithm us-

ing test instances of (P) are randomly generated.

The problems are solved using CPLEX 12.1 on a

Windows machine with Intel CORE i7 3.40 GHz

processor and 8GB RAM. Basically, we perform

two types of tests; one is for the decision of al-

gorithmic parameters such as the number of cuts

generated at a time and the cut rounds for each

family of cuts, and the other is for the verifica-

tion of our implementations through testing rela-

tively large instances. For the first type of tests,

we use 10 instances of size        .

We specify the details for the second type of

tests in Section 4.5.

4.2 Implementation Details

In order to implement Cut Generation and Pri-

mal Heuristics in Algorithm 1, we have to make

some implementation decisions such as how many

cuts are generated and how many rounds of cut

generations are performed before branching. Here

we describe how to choose those values by preli-

minary tests with 10 instances of size    

    .

•LS_CutGeneration：For (l, S) cuts, we run two

types of cut rounds and four types of the op-

tions to select nodes where cuts are generated.

<Table 1> shows that cut rounds does not af-

fect the performance of the BC algorithm sig-

nificantly, and the time needed for more rounds

does not also increase much. Further, the more

often we generate (l, S) cuts, the better the BC

algorithm performs. However, many cuts are

generated at the early nodes of the tree and

fewer cuts are generated as the BC performs.

Based on these observations, we decide to use

one round of cuts generated at Node Level ≤ 5.

34 정 광 헌

<Table 2> Where to Generate Cuts vs. How Many Cut Rounds for LMC Cuts

1 round 5 rounds

Cuts Nodes Time(s) # Cuts Nodes Time(s)

Root Node 0.50 47.80 3.39 0.50 47.80 3.55

Node Level ≤ 5 0.80 48.40 3.63 0.80 48.40 3.64

Node Level = 5n 1.30 47.80 3.52 1.30 47.80 3.69

Every Node 2.10 48.10 3.87 2.10 48.10 3.65

<Table 3> Number of Cuts Generated vs. Cut Rounds for Split Cuts

1 round 2 rounds

GC(%) Nodes Time(s) GC(%) Nodes Time(s)

10% 9.07 47.70 4.97 13.45 57.40 8.77

50% 24.99 53.90 49.84 30.22 63.40 234.14

100% 25.97 56.90 66.85 26.38 60.20 304.08

•LMC_CutGeneration：For LMC cuts, we sim-

ilarly run two types of cut rounds and four

types of the options to select nodes where cuts

are generated. <Table 2> shows that cut rounds

does not affect the performance of the BC al-

gorithm, and the time for more rounds is also

negligible. However, note here that more LMC

cuts are generated at the deeper level of the

tree. Since it is computationally inefficient to

generate cuts at every node, we decide to use

one round of cuts generated only if the node

level is the multiple of 5.

•SPLIT_CutGeneration：In order to separate the

split cuts in Section 3.3, we have to solve GCLP

which is relatively larger than the original pro-

blem. As we already discussed before, more

cuts in fewer rounds are better than less cuts

in many rounds. Hence, we only compare one

round with two rounds of the cut generation.

Further, since the LP solver takes more time

to solve the large size of LP, we decide to

generate the split cuts only at the root node.

Instead, we compare how the number of cuts

generated affects to the improvement of the

lower bound.

As we described before, we generate ⌈ × ⌉
number of lift-and-project cuts where F is the

set of fractional variables and r is the percentage

of fractional variables used as a disjunction to

generate cuts. We test three values of r (10%,

50%, and 100%) and the results are shown in

<Table 3>. We observe that more cuts clearly

help improve the lower bound, but need to take

extremely longer time. Therefore, we only gen-

erate one round of cuts with 50% of fractional

variables.

•TBF_Heuristic：Without any tests, we see that

the more often we call the primal heuristics, the

more likely we find out the feasible solution,

which leads the upper bound to converge to the

optimal value quickly. However, the TBF heu-

ristics needs to solve so many LPs over and

over that it takes longer time just for the hope

of finding better feasible solution. Therefore, we

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 35

<Table 4> Performance of Three Families of Cuts

(l, S) cuts LMC cuts Split Cuts

ID Cuts GC Nodes Time Cuts GC Nodes Time Cuts GC Nodes Time

(%) (sec) (%) (sec) (%) (sec)

1 1 17.69 63 4.72 0 0.00 61 4.05 2 17.69 183 32.70

2 2 10.23 25 3.11 1 0.12 25 2.84 4 8.47 27 11.78

3 1 100.00 9 0.75 0 0.00 11 0.73 2 0.00 7 1.70

4 0 0.00 19 1.13 0 0.00 19 1.05 2 0.00 13 2.05

5 2 52.86 13 1.78 1 0.00 22 2.44 3 54.59 13 3.94

6 0 0.00 31 2.17 1 0.01 31 2.20 2 1.87 28 5.48

7 1 38.78 95 6.30 0 0.00 105 6.28 2 38.78 99 8.48

8 0 0.00 182 9.33 1 0.02 182 9.47 2 0.00 184 15.64

9 0 0.00 1 0.11 0 0.00 1 0.14 2 0.00 1 1.45

10 1 11.68 19 2.81 1 0.00 21 2.91 2 13.11 19 4.48

Avg 23.12 45.70 3.22 0.02 47.80 3.21 13.45 57.47 8.77

use the default setting that we call the TBF

heuristics only where node levels are multiples

of 5 and before cuts are added.

4.3 Performance of Three Families of Cuts

We evaluate the strength of three families of

cuts discussed in Section 2. Performance meas-

ures that we used here are the number of cuts

generated, the percentage of gap closed, the num-

ber of nodes in the tree, and the solution time.

Let  be the optimal value of the LP relaxation

at the root node before the cuts are generated

and  be the optimal value of the LP relaxation

at the root node after the cuts are generated and

added to the formulation. Further, let  be the

objective value of the optimal integer solution

that we have after BC terminates. We define the

percentage of gap closed(GC) as

 

 

×

As the value of the gap closed is higher, the

formulation gets tighter after the cuts are added.

Similar to the tests before, we generate 10 instan-

ces with the size         and solve

each problem with three cuts respectively. Every

cut is generated only at the root node and two

rounds of cut generation is performed. Since it

takes so much time to solve CGLP to generate

split cuts, we use 10% of the total fractional var-

iables as the disjunctions.

The results are presented in <Table 4>. Among

three families of cuts, the performance of (l, S)

cuts is shown to be the best. Although it need

quite a short time to generate cuts, (l, S) cuts

significantly close the gap after cuts are added

and reduce the number of nodes in the tree. This

is because constraints (1) and (2) play more im-

portant role to define the structure of the lot-siz-

ing problem than others. LMC cuts are quickly

generated, but they do not help improve the bounds

significantly. Split cuts reasonably close the gap,

but it relatively takes too much time to generate

the cuts even for small size of the instances.

We used only one family of cuts so far, but we

36 정 광 헌

<Table 5> Joint Impacts of Three Families of Cuts

(l, S)+LMC (l, S)+Split All Cuts

Cuts GC Nodes Time Cuts GC Nodes Time Cuts GC Nodes Time

(%) (sec) (%) (sec) (%) (sec)

1.50 23.14 43.50 8.99 8.80 26.32 67.70 72.04 9.40 26.33 68.30 75.60

also try the joint use of the cuts. Since the per-

formance of (l, S) cuts are shown to dominate

others, we always generate (l, S) cuts and add

other cuts on top of them. We test three cases：

(i) both (l, S) cuts and LMC cuts are used,

(ii) both (l, S) cuts and split cuts are used, and

(iii) all cuts are used.

We observe in <Table 5> that we have the be-

nefits when we use the cuts jointly. However, there

is a trade-off between the gap closed and the

solution time. As we addressed before, it takes

long time to generate a split cut since we have to

solve a large size of CGLP. Those results are al-

so applied here since the solution time increases

too much when split cuts are used. Therefore, we

conclude that we generate (l, S) cuts and LMC

cuts in one round of the cut generation when we

test the general instances in Section 4.5.

4.4 Performance of Three Heuristics

We compare the effectiveness of three heuris-

tics described in Section 3. Since Dive-and-Fix is

used to find the feasible solutions for general

MIPs without using the problem-specific struc-

tures, we can easily guess that Time-based For-

ward heuristics performs better than DF heuris-

tics. <Table 6> shows this by computational re-

sults. We test 10 instances of size     

   with three heuristics and put the aver-

age of the values down in each row. Clearly, TBF

produces an improved feasible solution more of-

ten, but it also requires time to solve the LPs

iteratively. We have not seen any issues to apply

TBF to small size of problems, but we have to

set the maximum time that we allow to run TBF

for large size of instances in Section 4.5.

<Table 6> Performance of Three Heuristics

of improved solution Nodes Time(s)

LP DF 0.50 46.10 11.91

RINS DF 0.60 45.70 5.87

TBF 2.00 43.60 6.72

4.5 Numerical Results

The main goal of this paper is to see the ef-

fectiveness of different families of cuts in Branch-

and-Bound framework. Since we make the im-

plementation decisions through the preliminary

tests before, we now verify our implementations

by testing a few general instances. We solve test

problems 1-10 of different sizes      

     and    . We set the max-

imum time to 5,000 seconds as the stopping cri-

teria and use both (l, S) cuts and LMC cuts

jointly. All the parameters for the cut generation

are used as we decide before. <Table 7> sum-

marized the lower bounds, the upper bounds, and

the optimality gap that we obtained.

Our algorithms solve most of the problems to

the optimality, but for a few instances, BC algo-

Branch-and-Cut 알고리즘에서 Lot-Sizing 문제에 대한 Cutting Planes의 전산 성능 연구 1 37

<Table 7> Results for Large Instances

ID
(K, M, T) = (3, 3, 3) (K, M, T) = (4, 4, 4) (K, M, T) = (5, 5, 5)

LoBnd UpBnd OptGap LoBnd UpBnd OptGap LoBnd UpBnd OptGap

1 3792.00 3792.00 0.00 7041.00 7041.00 0.00 9875.00 9983.00 1.09

2 3429.00 3429.00 0.00 9372.00 9372.00 0.00 18486.00 18486.00 0.00

3 2945.00 2945.00 0.00 7846.00 8724.00 11.19 13941.93 14017.73 0.54

4 2992.00 2992.00 0.00 6962.00 6962.00 0.00 14938.00 14938.00 0.00

5 3236.00 3236.00 0.00 7997.00 7997.00 0.00 15788.00 15788.00 0.00

6 3909.00 3909.00 0.00 8097.81 8111.00 0.16 19564.00 25394.00 29.80

7 3869.00 3869.00 0.00 7546.20 7546.20 0.00 18311.00 24775.00 35.30

8 2584.00 2584.00 0.00 7041.00 7041.00 0.00 19467.74 19570.82 0.53

9 1725.00 1725.00 0.00 5461.00 5461.00 0.00 13313.00 13313.00 0.00

10 3430.00 3430.00 0.00 6899.00 6899.00 0.00 17844.00 17844.00 0.00

rithm terminates as the maximum solution time

exceeds before finding the optimal IP solution. In

particular, instance 7 of size        

has some numerical issues in solving the heu-

ristic LPs and spends so long time in finding the

improved solution even the lower bounds does

not improve any more. For those instances, we

have seen that the best integer feasible solution

obtained by BC is estimated to be within the op-

timality gap. This results is useful when optimal

solutions are fairly difficult to find in practice.

5. Concluding Remarks

In this paper, we considered three families of

cuts for a lot-sizing problem in order to evaluate

the strength of cuts in Branch-and-Cut algorithm.

We developed separation algorithms for three cuts

and provided implementation details that are ap-

plied in CPLEX. Through the computational study,

we obtained that (l, S) cuts are quickly generated

and significantly helpful to improve the gap closed.

While LMC cuts take short time to be generated,

they are not significant to improve the bound.

Split cuts may be helpful to close the gap, but it

takes much longer computing time to generate

the cuts.

For the direction of future research, the first

approach that we can try is to use the more gen-

eral cuts in MIP. Among general cutting planes

in MIP, we use lifted knapsack cover cuts and

split cuts in Section 2, but we can also add Go-

mory Mixed-Integer Cuts (GMIC); see Gomory [7].

According to the study of Balas et al. [3] and

Bixby and Rothberg [5], GMIC turns out to be

the most effective cutting plane in practice. In or-

der to generate a GMIC, we first solve LP relax-

ation and find a basic variable with a fractional

value from the simplex tableau. For each basic

variables, we generate GMICs and add them to

the formulation if violated.

To generate a lift-and-project cut in Section 2,

we always formulate and solve the Cut Generation

LP (CGLP). Since (CGLP) become fairly large

size LP to solve just for generating one cut, it is

computationally inefficient as shown in Section 4.

However, Balas and Perregaard [1] give an idea

to obtain lift-and-project cuts without solving

38 정 광 헌

CGLP. They show that there is a precise corre-

spondence between the basic feasible solution of

CGLP and the basic solutions of the LP relaxation.

Using this correspondence, we do not need to for-

mulate and solve the CGLP explicitly, but com-

pute deep lift-and-project cuts by pivoting direc-

tly in the LP relaxation.

References

[1] Balas, E. and M. Perregaard, “A precise cor-

respondence between lift-and-project cuts,

simple disjunctive cuts, and mixed-integer

gomory cuts for 0-1 programming,” Mathe-

matical Programming, Vol.94(2003), pp.221-

245.

[2] Balas, E., S. Ceria, and G. Cornuéjols, “A

lift-and-project cutting plane algorithm for

mixed 0-1 Programs,” Mathematical Pro-

gramming, Vol.58(1993), pp.295-324.

[3] Balas, E., S. Ceria, G. Cornuéjols, and R.N.

Natraj, “Gomory cuts revisited,” Operations

Research Letters, Vol.19(1996), pp.1-9.

[4] Barany, I., T.J. Van Roy, and L.A. Wolsey,

“Uncapacitated lot-sizing：The convex hull

of solutions,” Mathematical Programming,

Vol.22(1984), pp.32-43.

[5] Bixby, R. and E. Rothberg, “Progress in

computational mixed integer programming-a

look back from the other side of the tipping

point,” Annals of Operations Research, Vol.

149(2007), pp.37-41.

[6] Danna, E., E. Rothberg, and C. Le Pape, “Ex-

ploring relaxation induced neighborhoods to

improve MIP Solutions,” Mathematical Pro-

gramming, Vol.102(2005), pp.71-90.

[7] Gomory, R.E., “An algorithm for the mixed

integer program,” Technical report RM-2597,

The RAND Corporation, 1960.

[8] Gu, Z., G.L. Nemhauser, and M.W.P. Savel-

sbergh, “Lifted cover inequalities for 0-1 in-

teger programs：Computation,” INFORMS

Journal on Computing, Vol.10(1998), pp.427-

437.

[9] Marchand, H. and L.A. Wolsey, “Aggrega-

tion and mixed integer rounding to solve

MIPs,” Operations Research, Vol.49(1998),

pp.363-371.

[10] Marchand, H. and L.A. Wolsey, “The 0-1

knapsack problem with a single continuous

variable,” Mathematical Programming, Vol.85

(1999), pp.15-33.

