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Abstract

In this paper, we evaluate the strength of three families of cutting planes for a lot-sizing problem. Lot-sizing problem 

is very basic MIP model for production planning and many strong valid inequalities have been developed for a variety 

of relaxations in the literature. To use three families of cutting planes in Branch-and-Cut framework, we develop sepa-

ration algorithms for each cut and implement them in CPLEX. Then, we perform computational study to compare the 

effectiveness of three cuts for randomly generated instances of the lot-sizing problem.

Keywords：Mixed-Integer Programming (MIP), Branch-and-Cut, Lot-Sizing Problem, 

Separation

1. Introduction

Branch-and-Bound is a general method to solve 

mixed-integer programming (MIP) problems and 

widely used in MIP solvers such as CPLEX, Gu 

RoBi, and Xpress. However, since LP relaxations 

are typically weak for real problems, the number 

of nodes in Branch-and-Bound tree may grow 
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exponentially and the computing time to the opti-

mality becomes quite so long. In this case, valid 

inequalities can play a critical role to improve the 

performance by adding them to the original for-

mulation and tightening the LP relaxation. The 

combined approach of branch-and-bound and cut-

ting planes are called as Branch-and-Cut (BC) 

algorithm. While many cutting planes which are 

either general purpose or problem-dependent have 

been developed in the literature, the use of a spe-

cific cut is not so simple since we have to sepa-

rate the most violated cut for a given fractional 

LP solution. This is called as a separation prob-

lem that affects the performance of the Branch- 

and-Cut algorithm. 

The aim of this paper is to compare the effec-

tiveness of different kinds of cuts in Branch-and- 

Cut algorithm. For that purpose, we consider a 

lot-sizing problem for which many strong valid 

inequalities have been developed. We study three 

families of cuts and develop separation algorithms 

for them. Then, we evaluate the strength of three 

cuts through the computational study.

1.1 Lot-Sizing Problem and MIP Formulation

In this paper, we consider a variant of the lot- 

sizing problem. A company wants to decide on a 

production plan for a set of items  ⋯   

over time periods    ⋯  . It needs to satisfy 

a demand for item ∈  in period ∈. In or-
der to produce these items, a set of different ma-

chines   ⋯   is used. The time required 

to produce one unit of item k on machine m is 

given by   for ∈  and ∈ . Further, in 

order to produce any number of item k on machine 

m, the machine must be properly configured, which 

takes a fixed setup time   for ∈  and ∈ . 

There is a limited amount of processing time   

available on each machine ∈  in every time 

period ∈. The variable production cost for 
item k in period t is given by . The variable 

cost for holding one unit of item k in inventory at 

the end of period t is given by . Finally, the 

fixed cost for the production of item k in period t 

is given by .

One of the possible MIP formulations for this 

problem is given below. We first define the deci-

sion variables as follows：

   Number of items   produced in period t 

on mahcine m

   1 if item k is produced on machine m in 

period t, 0 otherwise

   Number of items k produced in period t

   1 if item k is produced in period t, 0  

otherwise

Using these variables, we establish the follow-

ing model.

    
∈∈


∈∈  

       
∈∈




   





 ≥




∀∈ ∀∈ (1)

(P)  ≤ 
  ∀∈ ∀∈    (2)

     ≤ ∀∈ ∀∈ (3)

                    ∀∈
   

∈
 

∈
 ≤  (4)

                     ∀∈ ∀∈
     

∈
 ∀∈∀∈ (5)

   ∈  ∈ ∀∈ (6)
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                ∀∈∀∈
    ≥   ≥ ∀∈ ∀∈ (7)

where 
 





.

Demand constraints (1) make sure that demand 

is satisfied without backlogging. Setup constra-

ints (2) and (3) enforce binary variable () 

to be set to 1 in case item k is produced (on ma-

chine m) in period t. Capacity constraints (4) re-

quire that the processing time for production 

must not exceed the capacity of each machine m 

in every period t. Finally, constraints (5) say that 

item k can be produced on different machines. 

The objective of this problem is to minimize 

the sum of variable production costs, setup costs, 

and inventory holding costs over the planning 

horizon. Regarding the value of   in constra-

ints (3), we used the implicit upper bounds ob-

tained from constraints (4), i.e.,

 ⌈
 ⌉  for ∀∈∀∈.

1.2 Branch-and-Cut Algorithm

Branch-and-Bound algorithm is the basic and 

general method that has been used to solve MIPs. 

First, a relaxation of the MIP (P) which is an LP 

relaxation in general is solved to obtain the bounds. 

Denote by   the optimal solution of the LP re-

laxation in a node V. Further, let I be the set of 

integer variables. If 
  for all ∈  is integral, 

then an optimal solution of (P) has been found and 

Branch-and-Bound algorithm terminates. Other-

wise, we divide or partition the feasible region into 

two smaller partitions  ∩   ≤⌊⌋ 
and  ∩   ≥⌈⌉ where   for ∈  

is a currently fractional variable. Then, we add 

two subproblems   and   to the problem list L 

and solve each subproblem recursively until L is 

empty or some termination criteria are satisfied.

Cutting planes can be used inside of a Branch- 

and-Bound algorithm to strengthen the LP relax-

ations which help speed up the Branch-and-Bound 

search. This mixed use of strong cutting and 

branching is known as Branch-and-Cut algorithm, 

which we are considering to solve the lot-sizing 

problem (P) in this paper. We summarize the 

general Branch-and-Cut procedure in Algorithm 

1 as shown below.

Algorithm 1：Branch-and-Cut Algorithm

Input：P, I

Output： 

Initialization

   ← ←∅ ←∞
while  ≠∅  do
  Check termination criteria
  Update list L

    if  ≥   for ∈  then
       ←╲
    end
  Node Selection
    Select ∈  and let  ←╲
  while Cut Generation needs to be performed do

    Obtain  and   by solving LP over V
    Pruning
      by Infeasibility： ∅

      by Bounds：≥ 

      by Integrality

        if    then

          if 
∈ℤ for all ∈  then

            Update upper bound：←

            Update incumbent solution：←

          end
        end
  Call Primal Heuristics
  Call Cut Generation
    if ∃ a violated cut then
      add to the formulation
    end
  end
  Branching
end
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When we apply a Branch-and-Cut algorithm to 

solve the MIP (P), we have to define and imple-

ment each subroutine in detail. For example, in 

order to add some cuts in branch-and-bound 

search, Cut Generation routine that we will dis-

cuss in Section 2 should be clearly clarified. To 

improve the speed of branch-and-bound search, 

we also describe one of the ideas to develop Pri-

mal Heuristics in Section 3.

Throughout the paper, some algorithmic decisions 

on other subroutines are made as follows;

•Termination criteria：Branch-and-Cut algorithm 

can be stopped by specifying a maximum num-

ber of nodes and maximum solution time. It is 

also terminated when the optimality gap is less 

than the given optimality criteria.

•Node selection：Among many node selection 

rules, we pick from the list L a node V which 

has the best bound.

•Branching：we choose as a branching variable 

the fractional integer variable with highest ob-

jective coefficient value.

The remaining of the paper is organized as 

follows. In Section 2, we consider three families 

of strong valid inequalities for the problem (P) 

and discuss how to separate the violated cut in 

the branch-and-bound search. Detailed separation 

algorithms for each cut are presented and some 

implementation details are given in Section 4. To 

improve the branch-and-bound search, we also 

develop primal heuristics that are described in 

Section 3. We perform the computational study 

for three cuts and present the numerical results 

in Section 4. Finally in Section 5, we conclude 

with remarks and direction of future research.

2 Cutting Planes

In this section, we study three families of cut-

ting planes that can be applied to the lot-sizing 

problem (P). We also develop separation algorithms 

to add the original formulation in branch-and- 

bound processes. For each family of cuts, we now 

describe exact or heuristic algorithms to separate 

a violated cut from many valid inequalities.

2.1 (l, S) Inequalities

Consider first the set    defined by the con-

straints (1) and (2)：

  ∈×  
 




 ≥




∀ ∈ ∀∈
  ≤ 

  ∀∈∀∈
     ≥ ,

      

When we drop off the constraints (3)～(5) from 

the original model (P), we obtain , which is a 

traditional incapacitated lot-sizing problem. Clearly, 

  is indeed a relaxation of (P). Barany et al. 

[4] introduced (l, S) inequalities and proved the 

following theorem.

Theorem 1：For given ∈  ⋯, 
 ⊆  ⋯  and  ╲ , 

(l, S) inequalities

  
∈
 

∈

 ≥ 



are facet-defining for the convex hull of .

Further they also show that (l, S) inequalities 
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provide complete description of the convex hull of 

.

Since this family of inequalities are exponentially 

many due to the selection of (l, S), we need to 

solve the separation problem that, for a given 

fractional solution  , determines whether 

there exists a (l, S) inequality that is violated or 

not. In Algorithm 2 below, we describe the exact 

separation algorithm in detail. If the separation 

algorithm find out violated cuts, we add them to 

the formulation (P).

Algorithm 2：Separation Algorithm for     
Inequalities

Input：  

Output：    cuts =     

for    ⋯   do
  for    ⋯   do

     
←

 




  

 
 

     if 
 

  then

        ←⋯   ← ∈      
       if ∈  then
         if ∈  then
           

← 
←

         else

           
← 

←


         end
       else

         
← 

←

       end

         ← 


    end
  end
end

It seems that implementation of Algorithm 2 

requires    time. However, we can obtain the 

following proposition.

Proposition 1：Algorithm 2 can be implemented 

in   .

Proof：Note that ≤ 
 

 ≤ 
 

 ≤ ⋯ ≤

 
 

 . Using bisection, for each ∈ , 
we can find an integer  ∈ ⋯  
such that  

 
  

 ≤ 
  

  in 

 . 

2.2 Lifted Mixed Cover Inequalities

Since constraints (4) are 0-1 mixed integer knap-

sack inequalities, we next consider as a relaxation 

of (P) a generic 0-1 knapsack polyhedron S of 

the form：

  ∈ ×  ∈∈ ≤ 

where   ∀∈,   ∀∈,    and 
≤ ∀∈. If there exists a subset ⊆  sat-
isfying 

∈
  , then we rewrite the knap-

sack constraint as：


∈
 

∈╲
 ≤ 

∈


∈

   (8)

by complementing the continuous variables   for 

∈, i.e. by introducing   . Observe now 

that S can be relaxed into the set

 ′  ∈ × ∈ ≤  ′ (9)

by relaxing the variables   for ∀∈╲  out 
of the problem, by substituting  ′ 

∈
, 

by defining a new variable  
∈

 , and by 

relaxing the bound of s to be ∞ . 
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Now, we observe that S' is a 0-1 knapsack 

polyhedron with a single continuous variable, 

which was studied by Marchand and Wolsey [9]. 

One of the facet-defining inequalities for the con-

vex hull of S' can be obtained via superadditive 

lifting. Assume that ⊆  is a strong cover for 

S' with the excess 
∈
 ′ . Further, assume 

without loss of generality that  ⋯  and 

 ≥  ≥ ⋯ ≥ . Then, Marchand and Wolsey 

[9] developed face-defining inequalities for the 

convex hull of S' using sequence-independent lift-

ing as shown in the following theorem.

Theorem 2：Lifted cover inequality


∈
  

∈╲
  (10)

             ≤
∈
 

is facet-defining for the convex hull of S' where

 










    ≤  
     ⋯ 

    ≤ 
   ⋯ 

    ≤ 

∈    , and  




  

for   ⋯.

Since S' is a relaxation of S, we convert (10) 

into a valid inequality for S by substituting  


∈

  and 

   back, i.e.


∈
  

∈╲
     (11)

     
∈
 ≤

∈
 

∈


Therefore, we can say that (11) is a valid in-

equality for S.

Note that lifted mixed cover inequalities (LMCI) 

(11) are also exponentially many since we can 

choose in different ways the subset ⊆  and a 

strong cover C in (P). We propose and describe a 

heuristic separation algorithm in Algorithm 3 below. 

In particular, we address the technical issues to 

find a subset ⊆  in (8) and a strong cover 

⊆  in (9). In order to find the subset J for a 

given fractional solution   , we need to mi-

nimize 
∈╲


, i.e. 

      
∈



 
∈
 ≥ 

This idea was proposed and shown to be ef-

fective by Marchand and Wolsey [9]. In order to 

select J using the exact approach, we have to 

solve the knapsack problem：

               
∈




  
∈
  ≤ 

                  ∈ ∀∈

However, solving knapsack problem (K1) is 

very time-consuming and separation routines are 

called over and over in the Branch-and-Bound 

search. Further, since our ultimate goal is to find 

a violated LMCI, it suffices us to use a greedy 

heuristic to solve (K1) using the ratios 




. 

After J is determined by the greedy heuristic, 

we next find an initial cover C to get LMCI. For 

a given fractional solution   , in order to 
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find the most violated cover exactly, we have to 

solve the following knapsack problem：

   
∈




       
∈
  

           ∈ ∀∈

This is also time-consuming, but here we can 

use the coefficient-independent cover generation 

approach which was introduced by Gu et al. [8]. 

Basic idea is to select first the variables with the 

highest LP values for the cover C. Let  ∈
  

   and    
∈
. Then, sort the va-

riables in ╲  in non-increasing order of LP 

values and add them to C until 
∈
  . Let 

  ∪. When the cover C obtained this way 

is not a strong cover, we delete the variables 

from C to convert it to a strong cover. 

After J and C are determined in this way, we 

can easily obtain the LMCI (11) with the follow-

ing Algorithm 3 as shown below. However, the 

inequality that we obtained may not be a violated 

cut since (10) is facet-defining for S', the relaxa-

tion of S, and we find J and C in the heuristic 

approach. Therefore, we need to check if the ob-

tained inequality is violated or not at the final 

step. Note that Algorithm 3 is not exact but he-

uristic.

2.3 Split Cuts

Since the lot-sizing problem (P) is a 0-1 MIP, 

we can use a split cut that is one of the general 

cutting planes in MIP. Consider an MIP of the 

general form：

Algorithm 3：Separation Heuristics for Lifted Mixed 

Cover Inequalities

Input：     

Output：Lifted Mixed Cover cuts =     

Initialization

  ←    ←  

for   ⋯ do

    ←
 





    for    ⋯   do

        Find  ⊆   maximizing 
∈
× 

      

             subject to 
∈
 ×  

        for   ⋯   do
            if ∈  then
                ← 
            else
                ← 

            end
        end

         ′←
∈
×  ←

∈
 × 

        if   ′  then
           Find a cover  and calculate 

                  
∈
 ′

           if  ≠    then
              Convert   into a strong cover and 

update 
           end
           Find a strong element 
           Sort   in non-increasing order and 

                 ←∈   
           for   ⋯   do

               Compute ←
 





           end
           for    ⋯   do
               if ∈  then
                   ←  
               else
                    ← 

               end
           end

           ← 
∈
  

           if 
  

      then

              ←  ←  ←

           end
        end
    end
end
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   ′ ′ 
     

    

 ′  ≤ 

     

    

 ′   ≤ 

∈ ∈ ∈ ∈  ∈  ∈ ∈

 ∈×  ≤ 

where A is ×  matrix, B is ×  matrix, and 

∈   along with a disjunction ′≤ ∨′≥
   where ∈  and ∈. Since variables 
x in the set P are integer, it is trivial that ⊆

∪  where

   ∈× 
 ≤   ′ ≥ 

and

   ∈× 
      ≤  ′≥  

Hence, we have that  ⊆ ∪ . 

The convex hull of ∪  can be obtained by 

disjunctive programming techniques and valid in-

equalities for ∪  are called split cuts. 

For a given fractional optimal solution    to 

the LP relaxation of P, we can perform the exact 

separation that determines if there exists a vio-

lated split cut ≥   from the disjunction 

′≤ ∨′≥    by solving the cut gen-
eration linear program (CGLP)：

In order to make sure that (CGLP) does not 

become unbounded, we need to add a normal-

ization constraint. We can try 

(i) ∈ ,
(ii) 










≤ , or

(iii) ≤ ≤ , 

for ∀  ⋯   and ≤  ≤ ∀  ⋯ . 

Since we have seen the unbounded cases when 

(i) is used for (P), we impose (iii) in the compu-

tational study due to the ease of implementation. 

After solving (CGLP) with the normalization con-

straint, if   , then the corresponding inequal-

ity     is the violated cut for the current LP 

solution    and can be added to the for-

mulation (P). Since the separation of split cuts is 

exactly performed by solving (CGLP), we always 

obtain the split cut whenever   .

However, in order to obtain good split cuts, it 

is important to define the right disjunctions for 

the lot-sizing problem (P). Note that (P) has only 

binary variables v and z. Therefore, we can use 

the disjunction  ≤ ∨ ≥ , i.e.,     and 

   for ∈. The split cuts derived from these 

disjunctions are called lift-and-project cuts; see 

Balas et al. [2]. When implementing the lift-and- 

project cuts, we have to decide how many cuts to 

generate at a given node. The time needed to ge-

nerate a given number of cuts is usually longer 

with many rounds of a few cuts than fewer rounds 
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of many cuts because re-optimization is needed 

in every round of the cut generation. Hence, we 

define the parameter r as the percentage of the 

fractional variables. Then, the maximum number 

of cuts to be generated is set to 

 ⌈ × ⌉

where F is the set of fractional variables in a 

node. Detailed steps for obtaining split cuts are 

summarized in Algorithm 4.

Algorithm 4：Separation Algorithm for Split Cuts

Input：       
Output：split cuts =    

Initialization

 ←∈   ∉
←⌈ × ⌉
Sort   in the non-increasing order of the fractional 
value
for  ⋯    do
   Define a disjunction：←  ←

   Call BuildCGLP

   Solve CGLP and let      be an optimal 
solution

   if    then

     ←  ← ←

   end

end

In our computational experiments later, we test 

three cases：r = 10%, r = 50%, and r = 100%. The 

comparison of these cases are provided in Section 5.

3 Primal Heuristics

While tightening the formulation (P) by using 

the cutting planes discussed in Section 3 enables 

us to obtain the better lower bound, finding a good 

integer feasible solution is also important in a 

Branch-and-Bound algorithm. This is because it 

provides the upper bound on the objective value 

of (P) and ultimately allows to prune more nodes 

by the tighter bound. 

Typically, there are two types of heuristics：

construction heuristics that produce a feasible 

solution from the ground, and improvement heu-

ristics that try to improve a given LP solution. 

Since the LP solutions associated with deeper no-

des get closer to be integer solution, we can build 

a heuristic approach to convert an optimal sol-

ution to the LP relaxation of a node in the tree to 

a good feasible solution to (P). In this section, we 

consider two improvement heuristics：Dive-and- 

Fix heuristics that can be used for any general 

MIP problems and a Time-based Forward heu-

ristics that we developed using characteristics of 

the lot-sizing problem (P).

3.1 LP-based Dive-and-Fix vs. RINS-based 

Dive-and-Fix

The basic idea of Dive-and-Fix (DF) heuristics 

is to take the LP solution at a node of the Branch- 

and-Bound tree and dive down the tree in search 

for finding a feasible solution. In general, since it 

iterates two steps to solve the LP and to fix the 

integer variables using the LP solution, this LP- 

based DF heuristics performs well with tight LP 

formulation. However, since it may not find good 

feasible solutions particularly at the early nodes of 

the tree, we also try a variant of Dive-and-Fix 

heuristics, which we call RINS-based DF heuri-

stics. 

While we fix the variables using the LP sol-

ution in LP-based DF, we fix the variables using 

the incumbent solution in RINS-based DF. Actu-

ally, the idea of RINS (Relaxation Induced Neigh-

borhood Search) proposed by Danna et al. [6] is 
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to explore the neighborhood between the LP sol-

ution and the IP solution by solving smaller MIPs 

again and again. However, solving small MIPs is 

computationally expensive in general, we just 

adopt the idea and take the combined approach 

that fix first the variables using the incumbent 

solution and solve the LP again. We provide two 

heuristics in Algorithm 5 as shown below.

Algorithm 5：Dive-and-Fix Heuristics

Input：       

Output：     

Initialization

 ←∈  ∉
while  ≠∅  do

  if   then
    Find the variable closest to integer 

          ←∈    
    if 

   then

      fix ⌊⌋ 
    else

      fix  ⌈⌉ 
    end

  else

    ：Fix the variables   
  for all 

           ∈  with 
  



  end

  Solve the resulting HeuristicLP：←new  

  HeuristicLP solution

  if     then
     STOP

  else

      ←∈  ∉
  end

end

←

3.2 Time-Based Forward Heuristics

Since Dive-and-Fix is a problem-independent 

heuristics, it does not use the characteristics of 

the lot-sizing problem. We developed a Time- 

Based Forward (TBF) heuristics which fixes the 

integer variables as time period moves from the 

beginning to the end. At each time period, we fix 

the values of binary variables z first using the 

LP solution and then solve the LP again to find 

the feasible solution satisfying all the constraints. 

We next fix the values of v since the variables v 

depend on the decision of z. We continue to se-

quentially fix the binary variables z and v as the 

time moves to the end T. Details are presented in 

Algorithm 6.

Algorithm 6：Time-based Forward Heuristics

Input：      

Output：     

Initialization

 ←∈   ∉  ←
while  ≠ ∅  ≤   do
  for     do

    if ≡    then

      Fix first 
 ∀ ∈∀∈

      if 
 ∈  then

          


      else

         ⌈ ⌉ 
      end

    else

      Fix next 
 ∀∈∀∈∀∈

      if 
 ∈  then

          


      else

         ⌈ ⌉ 
      end

    end

  end

  Solve HeuristicLP：←new HeuristicLP 

solution

  if     then
     STOP

  else

     ←∈  ∉
  end

   ← 

end

←
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<Table 1> Where to Generate Cuts vs. How Many Cut Rounds for (l, S) cuts

1 round 5 rounds

# Cuts Nodes Time(s) # Cuts Nodes Time(s)

Root Node 0.80 45.70 3.22 0.80 45.70 3.46

Node Level ≤ 5 1.20 46.70 4.70 1.20 46.70 4.99

Node Level = 5n 1.00 46.30 3.49 1.00 46.30 3.64

Every Node 1.60 45.50 5.03 1.60 45.50 5.29

One of the disadvantages of the TBF heuristics 

is that it may violate the capacity constraints at 

the end since early decision may prevent the ge-

neration of a feasible solution later.

4. Computational Study

We now perform a computational study to eva-

luate the strength of three families of cutting planes 

for the lot-sizing problem (P). Before we present 

the numerical results, we first describe how to 

solve (P) under what circumstances. We next de-

scribe how to implement each separation algo-

rithm proposed before in CPLEX. Impacts of three 

cuts are compared and the combined use of each 

cut is also investigated in Section 4.3. Compari-

son of three heuristics is also presented at the 

end of this section.

4.1 Testing Environments

We implement a branch-and-cut algorithm us-

ing test instances of (P) are randomly generated. 

The problems are solved using CPLEX 12.1 on a 

Windows machine with Intel CORE i7 3.40 GHz 

processor and 8GB RAM. Basically, we perform 

two types of tests; one is for the decision of al-

gorithmic parameters such as the number of cuts 

generated at a time and the cut rounds for each 

family of cuts, and the other is for the verifica-

tion of our implementations through testing rela-

tively large instances. For the first type of tests, 

we use 10 instances of size        . 

We specify the details for the second type of 

tests in Section 4.5.

4.2 Implementation Details

In order to implement Cut Generation and Pri-

mal Heuristics in Algorithm 1, we have to make 

some implementation decisions such as how many 

cuts are generated and how many rounds of cut 

generations are performed before branching. Here 

we describe how to choose those values by preli-

minary tests with 10 instances of size    

    .

•LS_CutGeneration：For (l, S) cuts, we run two 

types of cut rounds and four types of the op-

tions to select nodes where cuts are generated. 

<Table 1> shows that cut rounds does not af-

fect the performance of the BC algorithm sig-

nificantly, and the time needed for more rounds 

does not also increase much. Further, the more 

often we generate (l, S) cuts, the better the BC 

algorithm performs. However, many cuts are 

generated at the early nodes of the tree and 

fewer cuts are generated as the BC performs. 

Based on these observations, we decide to use 

one round of cuts generated at Node Level ≤ 5.
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<Table 2> Where to Generate Cuts vs. How Many Cut Rounds for LMC Cuts

1 round 5 rounds

# Cuts Nodes Time(s) # Cuts Nodes Time(s)

Root Node 0.50 47.80 3.39 0.50 47.80 3.55

Node Level ≤ 5 0.80 48.40 3.63 0.80 48.40 3.64

Node Level = 5n 1.30 47.80 3.52 1.30 47.80 3.69

Every Node 2.10 48.10 3.87 2.10 48.10 3.65

<Table 3> Number of Cuts Generated vs. Cut Rounds for Split Cuts

1 round 2 rounds

GC(%) Nodes Time(s) GC(%) Nodes Time(s)

10% 9.07 47.70 4.97 13.45 57.40 8.77

50% 24.99 53.90 49.84 30.22 63.40 234.14

100% 25.97 56.90 66.85 26.38 60.20 304.08

•LMC_CutGeneration：For LMC cuts, we sim-

ilarly run two types of cut rounds and four 

types of the options to select nodes where cuts 

are generated. <Table 2> shows that cut rounds 

does not affect the performance of the BC al-

gorithm, and the time for more rounds is also 

negligible. However, note here that more LMC 

cuts are generated at the deeper level of the 

tree. Since it is computationally inefficient to 

generate cuts at every node, we decide to use 

one round of cuts generated only if the node 

level is the multiple of 5.

•SPLIT_CutGeneration：In order to separate the 

split cuts in Section 3.3, we have to solve GCLP 

which is relatively larger than the original pro-

blem. As we already discussed before, more 

cuts in fewer rounds are better than less cuts 

in many rounds. Hence, we only compare one 

round with two rounds of the cut generation. 

Further, since the LP solver takes more time 

to solve the large size of LP, we decide to 

generate the split cuts only at the root node. 

Instead, we compare how the number of cuts 

generated affects to the improvement of the 

lower bound.

As we described before, we generate ⌈ × ⌉
number of lift-and-project cuts where F is the 

set of fractional variables and r is the percentage 

of fractional variables used as a disjunction to 

generate cuts. We test three values of r (10%, 

50%, and 100%) and the results are shown in 

<Table 3>. We observe that more cuts clearly 

help improve the lower bound, but need to take 

extremely longer time. Therefore, we only gen-

erate one round of cuts with 50% of fractional 

variables.

•TBF_Heuristic：Without any tests, we see that 

the more often we call the primal heuristics, the 

more likely we find out the feasible solution, 

which leads the upper bound to converge to the 

optimal value quickly. However, the TBF heu-

ristics needs to solve so many LPs over and 

over that it takes longer time just for the hope 

of finding better feasible solution. Therefore, we 
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<Table 4> Performance of Three Families of Cuts

(l, S) cuts LMC cuts Split Cuts

ID Cuts GC Nodes Time Cuts GC Nodes Time Cuts GC Nodes Time

(%) (sec) (%) (sec) (%) (sec)

1 1 17.69 63 4.72 0 0.00 61 4.05 2 17.69 183 32.70

2 2 10.23 25 3.11 1 0.12 25 2.84 4 8.47 27 11.78

3 1 100.00 9 0.75 0 0.00 11 0.73 2 0.00 7 1.70

4 0 0.00 19 1.13 0 0.00 19 1.05 2 0.00 13 2.05

5 2 52.86 13 1.78 1 0.00 22 2.44 3 54.59 13 3.94

6 0 0.00 31 2.17 1 0.01 31 2.20 2 1.87 28 5.48

7 1 38.78 95 6.30 0 0.00 105 6.28 2 38.78 99 8.48

8 0 0.00 182 9.33 1 0.02 182 9.47 2 0.00 184 15.64

9 0 0.00 1 0.11 0 0.00 1 0.14 2 0.00 1 1.45

10 1 11.68 19 2.81 1 0.00 21 2.91 2 13.11 19 4.48

Avg 23.12 45.70 3.22 0.02 47.80 3.21 13.45 57.47 8.77

use the default setting that we call the TBF 

heuristics only where node levels are multiples 

of 5 and before cuts are added.

4.3 Performance of Three Families of Cuts

We evaluate the strength of three families of 

cuts discussed in Section 2. Performance meas-

ures that we used here are the number of cuts 

generated, the percentage of gap closed, the num-

ber of nodes in the tree, and the solution time. 

Let   be the optimal value of the LP relaxation 

at the root node before the cuts are generated 

and   be the optimal value of the LP relaxation 

at the root node after the cuts are generated and 

added to the formulation. Further, let   be the 

objective value of the optimal integer solution 

that we have after BC terminates. We define the 

percentage of gap closed(GC) as

 

 

×

As the value of the gap closed is higher, the 

formulation gets tighter after the cuts are added. 

Similar to the tests before, we generate 10 instan-

ces with the size          and solve 

each problem with three cuts respectively. Every 

cut is generated only at the root node and two 

rounds of cut generation is performed. Since it 

takes so much time to solve CGLP to generate 

split cuts, we use 10% of the total fractional var-

iables as the disjunctions. 

The results are presented in <Table 4>. Among 

three families of cuts, the performance of (l, S) 

cuts is shown to be the best. Although it need 

quite a short time to generate cuts, (l, S) cuts 

significantly close the gap after cuts are added 

and reduce the number of nodes in the tree. This 

is because constraints (1) and (2) play more im-

portant role to define the structure of the lot-siz-

ing problem than others. LMC cuts are quickly 

generated, but they do not help improve the bounds 

significantly. Split cuts reasonably close the gap, 

but it relatively takes too much time to generate 

the cuts even for small size of the instances.

We used only one family of cuts so far, but we 
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<Table 5> Joint Impacts of Three Families of Cuts

(l, S)+LMC (l, S)+Split All Cuts

Cuts GC Nodes Time Cuts GC Nodes Time Cuts GC Nodes Time

(%) (sec) (%) (sec) (%) (sec)

1.50 23.14 43.50 8.99 8.80 26.32 67.70 72.04 9.40 26.33 68.30 75.60

also try the joint use of the cuts. Since the per-

formance of (l, S) cuts are shown to dominate 

others, we always generate (l, S) cuts and add 

other cuts on top of them. We test three cases：

(i) both (l, S) cuts and LMC cuts are used, 

(ii) both (l, S) cuts and split cuts are used, and 

(iii) all cuts are used. 

We observe in <Table 5> that we have the be-

nefits when we use the cuts jointly. However, there 

is a trade-off between the gap closed and the 

solution time. As we addressed before, it takes 

long time to generate a split cut since we have to 

solve a large size of CGLP. Those results are al-

so applied here since the solution time increases 

too much when split cuts are used. Therefore, we 

conclude that we generate (l, S) cuts and LMC 

cuts in one round of the cut generation when we 

test the general instances in Section 4.5.

4.4 Performance of Three Heuristics

We compare the effectiveness of three heuris-

tics described in Section 3. Since Dive-and-Fix is 

used to find the feasible solutions for general 

MIPs without using the problem-specific struc-

tures, we can easily guess that Time-based For-

ward heuristics performs better than DF heuris-

tics. <Table 6> shows this by computational re-

sults. We test 10 instances of size     

    with three heuristics and put the aver-

age of the values down in each row. Clearly, TBF 

produces an improved feasible solution more of-

ten, but it also requires time to solve the LPs 

iteratively. We have not seen any issues to apply 

TBF to small size of problems, but we have to 

set the maximum time that we allow to run TBF 

for large size of instances in Section 4.5.

<Table 6> Performance of Three Heuristics

# of improved solution Nodes Time(s)

LP DF 0.50 46.10 11.91

RINS DF 0.60 45.70 5.87

TBF 2.00 43.60 6.72

4.5 Numerical Results

The main goal of this paper is to see the ef-

fectiveness of different families of cuts in Branch- 

and-Bound framework. Since we make the im-

plementation decisions through the preliminary 

tests before, we now verify our implementations 

by testing a few general instances. We solve test 

problems 1-10 of different sizes      

      and    . We set the max-

imum time to 5,000 seconds as the stopping cri-

teria and use both (l, S) cuts and LMC cuts 

jointly. All the parameters for the cut generation 

are used as we decide before. <Table 7> sum-

marized the lower bounds, the upper bounds, and 

the optimality gap that we obtained.

Our algorithms solve most of the problems to 

the optimality, but for a few instances, BC algo-
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<Table 7> Results for Large Instances

ID
(K, M, T) = (3, 3, 3)  (K, M, T) = (4, 4, 4) (K, M, T) = (5, 5, 5)

LoBnd UpBnd OptGap LoBnd UpBnd OptGap LoBnd UpBnd OptGap

1 3792.00 3792.00 0.00 7041.00 7041.00 0.00 9875.00 9983.00 1.09

2 3429.00 3429.00 0.00 9372.00 9372.00 0.00 18486.00 18486.00 0.00

3 2945.00 2945.00 0.00 7846.00 8724.00 11.19 13941.93 14017.73 0.54

4 2992.00 2992.00 0.00 6962.00 6962.00 0.00 14938.00 14938.00 0.00

5 3236.00 3236.00 0.00 7997.00 7997.00 0.00 15788.00 15788.00 0.00

6 3909.00 3909.00 0.00 8097.81 8111.00 0.16 19564.00 25394.00 29.80

7 3869.00 3869.00 0.00 7546.20 7546.20 0.00 18311.00 24775.00 35.30

8 2584.00 2584.00 0.00 7041.00 7041.00 0.00 19467.74 19570.82 0.53

9 1725.00 1725.00 0.00 5461.00 5461.00 0.00 13313.00 13313.00 0.00

10 3430.00 3430.00 0.00 6899.00 6899.00 0.00 17844.00 17844.00 0.00

rithm terminates as the maximum solution time 

exceeds before finding the optimal IP solution. In 

particular, instance 7 of size          

has some numerical issues in solving the heu-

ristic LPs and spends so long time in finding the 

improved solution even the lower bounds does 

not improve any more. For those instances, we 

have seen that the best integer feasible solution 

obtained by BC is estimated to be within the op-

timality gap. This results is useful when optimal 

solutions are fairly difficult to find in practice.

5. Concluding Remarks

In this paper, we considered three families of 

cuts for a lot-sizing problem in order to evaluate 

the strength of cuts in Branch-and-Cut algorithm. 

We developed separation algorithms for three cuts 

and provided implementation details that are ap-

plied in CPLEX. Through the computational study, 

we obtained that (l, S) cuts are quickly generated 

and significantly helpful to improve the gap closed. 

While LMC cuts take short time to be generated, 

they are not significant to improve the bound. 

Split cuts may be helpful to close the gap, but it 

takes much longer computing time to generate 

the cuts.

For the direction of future research, the first 

approach that we can try is to use the more gen-

eral cuts in MIP. Among general cutting planes 

in MIP, we use lifted knapsack cover cuts and 

split cuts in Section 2, but we can also add Go-

mory Mixed-Integer Cuts (GMIC); see Gomory [7]. 

According to the study of Balas et al. [3] and 

Bixby and Rothberg [5], GMIC turns out to be 

the most effective cutting plane in practice. In or-

der to generate a GMIC, we first solve LP relax-

ation and find a basic variable with a fractional 

value from the simplex tableau. For each basic 

variables, we generate GMICs and add them to 

the formulation if violated.

To generate a lift-and-project cut in Section 2, 

we always formulate and solve the Cut Generation 

LP (CGLP). Since (CGLP) become fairly large 

size LP to solve just for generating one cut, it is 

computationally inefficient as shown in Section 4. 

However, Balas and Perregaard [1] give an idea 

to obtain lift-and-project cuts without solving 
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CGLP. They show that there is a precise corre-

spondence between the basic feasible solution of 

CGLP and the basic solutions of the LP relaxation. 

Using this correspondence, we do not need to for-

mulate and solve the CGLP explicitly, but com-

pute deep lift-and-project cuts by pivoting direc-

tly in the LP relaxation. 
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