References
- J. A. Turner, Sustainable hydrogen production, Science, 305, 972-974 (2004). https://doi.org/10.1126/science.1103197
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8, 76-80 (2009). https://doi.org/10.1038/nmat2317
- T. Hugle, M. F. Kuhnel, and D. Lentz, Hydrazine Borane: A promising hydrogen storage material, J. Am. Chem. Soc., 131, 7444-7446 (2009). https://doi.org/10.1021/ja9013437
- S. C. Marinescu, J. R. Winkler, and H. B. Gray, Molecular mechanisms of cobalt-catalyzed hydrogen evolution, Proc. Nat. Acad. Sci., 109, 15127-15131 (2012). https://doi.org/10.1073/pnas.1213442109
-
D. J. Collins and H.-C. Zhou, Synthesis and characterization of prussian blue modified magnetite nanoparticles and its application to the electrocatalytic reduction of
$H_2O_2$ , J. Mater. Chem., 17, 3154-3159 (2007). https://doi.org/10.1039/b702858j - J. C. Walter, A. Zurawski, D. Montgomery, M. Thornburg, and S. Revankar, Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources, 179, 335-339 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.006
- J. W. Jaworski, D. Kim, K. Jung, S. Kim, J. H. Jung, J. O. Jeong, H. S. Jeon, B. K. Min, and K.-Y. Kwon, Surface modification of hydroxyapatite for hydrogen generation, J. Colloid Interface Sci., 358, 598-603 (2011). https://doi.org/10.1016/j.jcis.2011.03.068
-
M. Rakap and S. Ozkar, Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co-Ni-P) catalyst supported on Pd-activated
$TiO_2$ by electroless deposition, Int. J. Hydrogen Energy, 36, 7019-7027 (2011). https://doi.org/10.1016/j.ijhydene.2011.03.017 - D. Elik, S. Karahan, M. Zahmakiran, and S. Ozkar, Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium (0) nanoparticles supported on hydroxyapatite, Int. J. Hydrogen Energy, 37, 5143-5151 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.067
- L. Ai, X. Liu, and J. Jiang, Synthesis of loofah sponge carbon supported bimetallic silver-cobalt nanoparticles with enhanced catalytic activity towards hydrogen generation from sodium borohydride hydrolysis, J. Alloys Compd., 625, 164-170 (2015). https://doi.org/10.1016/j.jallcom.2014.11.135
- D.-W. Zhuang, H.-B. Dai, Y.-J. Zhong, L.-X. Sun, and P. Wang, A new reactivation method towards deactivation of honeycomb ceramic monolith supported cobalt-molybdenum-boron catalyst in hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 40, 9373-9381 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.177
-
F. Li, E. E. Arthur, D. La, Q. Li, and H. Kim, Immobilization of
$CoCl_2$ (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of$NaBH_4$ (sodium borohydride), Energy, 71, 32-39 (2015). - L. Ai, X. Gao, and J. Jiang, In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis, J. Power Sources, 257, 213-220 (2015).