DOI QR코드

DOI QR Code

Enhanced Antimicrobial Activities and Physicochemical Characteristics of Isoliquiritigenin Encapsulated in Hydroxypropyl-β-Cyclodextrin

아이소리퀴리티게닌을 담지한 2-하이드록시프로필-베타사이클로덱스트린의 물리화학적 특성 및 항균활성 연구

  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 김해수 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 임나리 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 나노바이오화장품연구실, 화장품종합기술연구소)
  • Received : 2015.10.05
  • Accepted : 2015.11.15
  • Published : 2015.12.10

Abstract

Isoliquiritigenin (ILG) is a hydrophobic component in licorice and has a variety of pharmaceutical and biological activities. In this study, we prepared an isoliquiritigenin-hydroxypropyl-${\beta}$-cyclodextrin (ILG/HP-${\beta}$-CD) complex by freeze-drying method to enhance its water solubility. The complex was characterized by phase solubility studies, DSC, SEM, and 1H NMR. Antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were evaluated by broth dilution method. The results showed that the stoichiometry of ILG/HP-${\beta}$-CD complex was 1 : 1. The antimicrobial activity of ILG/HP-${\beta}$-CD complex was higher than that of using free ILG against S. aureus and E. coli. Therefore, we suggest that ILG/HP-${\beta}$-CD complex may be used as a natural antiseptic and could potentially replace synthetic preservatives in cosmetic and food industries.

아이소리퀴리티게닌은 감초의 구성 성분으로서 항산화, 항균 활성과 같은 다양한 약리학적 활성을 가지고 있는 소수성 물질이다. 본 연구에서는 소수성 약물의 용해도를 증진시키기 위해서 아이소리퀴리티게닌/2-하이드록시프로필-베타사이클로덱스트린 복합체를 freeze-drying 방식으로 제조하였고, 상평형 연구, DSC, SEM, 1H NMR을 통하여 그 특성을 확인하였다. 항균 활성은 Staphylococcus aureus (S. aureus)와 Escherichia coli (E. coli)에 대해 broth dilution assay 측정법으로 최소성장억제농도(minimum inhibitory concentration, MIC)를 확인하였다. 상평형 연구를 통해 아이소리퀴리티게닌/2-하이드록시프로필-베타사이클로덱스트린 복합체는 1 : 1 몰비율로 형성되는 것을 확인하였다. S. aureus와 E. coli에 대한 MIC는 아이소리퀴리티게닌/2-하이드록시프로필-베타사이클로덱스트린 복합체의 경우 각각 1.25 및 2.5 mg/mL이었으며, free한 아이소리퀴리티게닌은 각각 5, 5 mg/mL로 아이소리퀴리티게닌/2-하이드록시프로필-베타사이클로덱스트린 복합체가 더 높은 항균 활성을 나타내었다. 이는 아이소리퀴리티게닌/사이클로덱스트린 복합체가 식품 및 화장품 산업에서 합성 방부제를 대체하고 천연 방부제로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. X. Zhang, E. D. Yeung, J. Wang, E. E. Panzhinskiy, C. Tong, W. Li, and J. Li, Isoliquiritigenin, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer cells, Clin. Exp. Pharmacol. Physiol., 37, 841-847 (2010).
  2. H. Haraguchi, H. Ishikawa, K. Mizutani, Y. Tamura, and T. Kinoshita, Antioxidative and superoxide scavenging activities of retrochalcones in Glycyrrhiza inflata, Bioorg. Med. Chem., 6, 339-347 (1998). https://doi.org/10.1016/S0968-0896(97)10034-7
  3. J. Y. Kim, S. J. Park, K. J. Yun, Y. W. Cho, H. J. Park, and K. T. Lee, Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of $NF-{\kappa}B$ in RAW 264.7 macrophages, Eur. J. Pharmacol., 584, 175-184 (2008). https://doi.org/10.1016/j.ejphar.2008.01.032
  4. O. Nerya, J. Vaya, R. Musa, and S. Izrael, R. Ben-Arie and S. Tamir, Glabrene and Isoliquiritigenin as Tyrosinase Inhibitors from Licorice Roots, J. Agric. Food Chem., 51, 1201-1207 (2003). https://doi.org/10.1021/jf020935u
  5. J. Y. Bae, H. N. Jang, and S. N. Park, Antimicrobial Activities of Licorice Extracts from Various Countries of Origin according to Extraction Conditions, Korean J. Microbiol. Biotechnol., 42, 361-366 (2014). https://doi.org/10.4014/kjmb.1408.08002
  6. T. Loftsson and M. E. Brewster, Pharmaceutical applications of cyclodextrins. 1. drug solubilization and stabilization, J. Pharm. Sci., 85, 1017-1025 (1996). https://doi.org/10.1021/js950534b
  7. E. M. M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem., 39, 1033-1046 (2003).
  8. C. Yuan, Z. Lu, and Z. Jin, Characterization of an inclusion complex of ethyl benzoate with hydroxypropyl-${\beta}$-cyclodextrin, Food Chem, 152, 140-145 (2014). https://doi.org/10.1016/j.foodchem.2013.11.139
  9. C. Danciu, C. Soica, M. Oltean, S. Avram, F. Borcan, E. Csanyi, R. Ambrus, I. Zupko, D. Muntean, C. A. Dehelean, M. Craina, and R. A. Popovici, Genistein in 1 : 1 Inclusion Complexes with Ramified Cyclodextrins: Theoretical, Physicochemical and Biological Evaluation, Int. J. Mol. Sci., 15, 1962-1982 (2014). https://doi.org/10.3390/ijms15021962
  10. H. Liang, Q. Yuan, F. Vriesekoop, and F. Lv, Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds, Food Chem., 135, 1020-1027 (2012). https://doi.org/10.1016/j.foodchem.2012.05.054
  11. J. A. Kamimura, E. H. Santos, L. E. Hill, and C. L. Gomes, Antimicrobial and antioxidant activities of carvacrol microencapsulated in hydroxypropyl-beta-cyclodextrin, LWT-Food. Sci. Technol., 57, 701-709 (2014). https://doi.org/10.1016/j.lwt.2014.02.014
  12. T. Higuchi and K. A. Connors, Phase-solubility techniques, Adv. Anal. Chem. Instr., 4, 212-217 (1965).
  13. A. L. Brandt, A. Castillo, K. B. Harris, J. T. Keeton, M. D. Hardin, and T. M. Taylor, Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination, J. Food. Sci., 75, 557-563 (2010).
  14. Y. Yao, Y. Xie, C. Hong, G. Li, H. Shen, and G. Ji, Development of a myricetin/hydroxypropyl-${\beta}$-cyclodextrin inclusion complex: Preparation, characterization, and evaluation, Carbohydr. Polym., 110, 329-337 (2014). https://doi.org/10.1016/j.carbpol.2014.04.006
  15. S. X. Ma, W. Chen, X. D. Yang, N. Zhang, S. J. Wang, L. Liu, and L. J. Yang, Alpinetin/hydroxypropyl-${\beta}$-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability, J. Pharm. Biomed. Sci., 67-68, 193-200 (2012). https://doi.org/10.1016/j.jpba.2012.04.038
  16. Z. Huanga, S. Tina, X. Ge, J. Zhang, S. Li, and M. Li. Complexation of chlorpropham with hydroxypropyl-${\beta}$-cyclodextrinand its application in potato sprout inhibition, Carbohydr. Polym., 107, 241-246 (2014). https://doi.org/10.1016/j.carbpol.2014.02.072
  17. J. Chao, J. Su, J. Li, W. Zhao, S. Huang, and R. Du, Investigation on the inclusion behaviour of baicalein with ${\beta}$-cyclodextrin and derivatives and their antioxidant ability study, Supramol. Chem., 23, 641-649 (2011). https://doi.org/10.1080/10610278.2011.593630
  18. Y. Jiang, X. Sha, W. Zhang, and X. Fang, Complex of 9-nitro-camptothecin in hydroxypropyl-${\beta}$-cyclodextrin: In vitro and in vivo evaluation, Int. J. Pharm., 397, 116-121 (2010). https://doi.org/10.1016/j.ijpharm.2010.07.012

Cited by

  1. Review of the Usability of Cyclodextrin as a Cosmetic Ingredient vol.17, pp.4, 2015, https://doi.org/10.20402/ajbc.2019.0314
  2. Antibacterial activity of free or encapsulated selected phenylpropanoids against Escherichia coli and Staphylococcus epidermidis vol.128, pp.3, 2015, https://doi.org/10.1111/jam.14516