DOI QR코드

DOI QR Code

안정화제를 첨가한 생활폐기물 소각시설 바닥재의 중금속 용출특성에 관한 연구

A Study on the Leachate Characteristics of Heavy Metals from MSW Bottom Ash Solidified with Stabilizing Reagents

  • 임종완 (서울시립대학교 환경공학부) ;
  • 동종인 (서울시립대학교 환경공학부)
  • Lim, Jong-Wan (School of Environmental Engineering, University of Seoul) ;
  • Dong, Jong-In (School of Environmental Engineering, University of Seoul)
  • 투고 : 2015.09.04
  • 심사 : 2015.10.19
  • 발행 : 2015.12.10

초록

본 연구에서는 바닥재에 CaO와 $Al_2O_3$를 중량비로 각각 10~40% (W/W)로 첨가 후 7일 및 28일을 양생시킨 다음 중금속 용출 저감 효율에 대한 영향 등을 연구하였다. 실험결과, 7일 양생 기간에서는 구리 69.3%, 납 52.1%의 중금속 저감 효율을 보였다. 28일 양생 시에는 구리 85.2%, 납 100% 제거 효율을 보였다. 위 실험결과 양생 시간이 길어질수록 높은 중금속 저감 효율을 보이는 것을 확인할 수 있었다.

In this study, the reduction efficiencies of leachate heavy metal levels were investigated by adding $Al_2O_3$ and CaO to the bottom ash to observe their effects on the heavy metals leachate reduction efficiency. The ratio of $Al_2O_3$ and CaO contents were varied by 10~40% (W/W) alongside different curing time of 7 and 28 days. The reduction efficiencies of leachate heavy metal levels were estimated to be 69.3% for Cu and 52.1% for Pb during the curing time of 7 days. For the curing time of 28 days, the efficiencies changed to 85.2 and 100% for Cu and Pb, respectively. It was thus confirmed that the high reduction efficiency could be obtained as the curing time increased.

키워드

참고문헌

  1. T. Mangialardi, A. E. Paolini, A. Polettini, and P. Sirini, Optimization of the solidification /stabilization process of MSW fly ash in cementitious matrices, J. Hazardous Mater., 70, 53-70 (1999). https://doi.org/10.1016/S0304-3894(99)00132-6
  2. Walter J. Weber, Jr., Environmental system and processes : principles, modeling, and design, 147-152, John Wiley & Sons, Inc, NY, USA (2001).
  3. Y. S. Shim, Y. K. Kim, and W. K. Lee, Study on Factors Affecting Adsorption of Heavy Metal Using Bottom Ash from Incineration of MSW, Korea Waste Association, 19, 933-940 (2002).
  4. M. C. Jung, Heavy Metal Contamination of Soils, Plants, Waters and Sediments in the Vicinity of Metalliferous Mines in Korea, PhD Dissertation, Univ. of London, London, England (1995).
  5. K. P. Yadava, B. S. Tyagi, K. K. Panday, and V. N. Singh, Fly ash for the treatment of Cd(II) rich effluents, Environ. Tech. Lett., 8, 225-234 (1987). https://doi.org/10.1080/09593338709384482
  6. Y. S. Shim, Y. K. Kim, S. H. Kong, S. W. Rhee, and W. K. Lee, The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash., Waste Management, 23, 851-857 (2003). https://doi.org/10.1016/S0956-053X(02)00163-0
  7. Y. W. Nam, N. Y. Kim, and H. S. Kim, A Study on the reusability of fly ash as additive for cement, Korea Waste Association, 17, 907-913 (2000).
  8. J. A. Meima, R. D. Van der Weijden, T. H. Eighmy, and R. N. J. Comans, Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybden., Appl. Geochem., 17, 1503-1513 (2002). https://doi.org/10.1016/S0883-2927(02)00015-X
  9. J. W. Phair, J. S. J. Van Deventer, and J. D. Smith, Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based "geopolymers", Appl. Geochem., 19, 423-434 (2004). https://doi.org/10.1016/S0883-2927(03)00151-3
  10. H. J. Jang and S. J. Kim, Study on the heavy metal stabilization by dosing of chelate on the bottom ash., J. KORRA, 17, 81-90 (2009).
  11. J. S. Park, Physico-Chemical Characteristics of Municipal Solid Waste Generated from T City and Leaching Characteristics of the Incineration Ash., J. KORRA, 18, 84-92 (2010).
  12. B. W. Jo, K. I, Kim, J. C. Park and S. K. Park, Properties of Chemically Activated MSWI(Municipal Solid Waste Incineration) Mortar., J. Kor. Concr. Inst., 18, 589-594 (2006). https://doi.org/10.4334/JKCI.2006.18.5.589
  13. Techniqsche Lieferbedingungen fur Mineralstoffe im Strabenbau, FGSV Verlag, Koln-FGSV 699.