DOI QR코드

DOI QR Code

A Study on Combustion Characteristics due to Changes in Solid Refuse Fuel Properties

고형연료제품 성상 변화에 따른 연소특성에 관한 연구

  • Received : 2015.09.04
  • Accepted : 2015.10.19
  • Published : 2015.12.10

Abstract

A basic research for utilizing solid refuse fuel (SRF) based on changing SRF properties (RDF, RPF) and types (pellet, fluff) is demonstrated. Physicochemical characteristics of SRF and also changes in thermal decomposition depending on combustion time and emission gas (NOx, CO, HCl, etc) concentration were investigated for applications to waste energy sources. In conclusion, RPF is easy to pelletize, and has better combustion efficiency, higher LHV, higher thermal reduction, and short combustion time because it is composed of plastic wastes homogeneously. Also, fluff type samples have better combustion efficiency, and short combustion time because it has wider exposed surface area for combustion. It can also save energy consumption for pelletizing.

본 연구에서는 SRF 성상 변화(RDF, RPF)와 성형 조건 형태(pellet, fluff)에 따른 SRF의 활용을 위한 기초연구로서 SRF의 물리화학적 특성, 연소시간에 따른 고형연료제품의 열적 감량 변화 및 발생되는 배출 가스(NOx, CO, HCl 등) 특성 연구를 수행함으로써 에너지원으로서의 활용을 위한 실험을 진행하였다. 실험결과, RPF 시료가 RDF 시료보다 폐기물의 조성이 플라스틱계열 폐기물로 균일한 성상으로 구성하고 있어 성형에 유리하고 발열량이 높으며, 연소성이 우수하여 연소감량효과도 크며 연소시간도 단축할 수 있을 것으로 판단된다. 또한, fluff 시료가 pellet 시료에 비해 접촉 표면적이 넓어 연소시간도 단축되어 연소효율이 우수하며, 성형에 필요한 자원을 절감할 수 있어 에너지 활용가치가 우수할 것으로 판단된다.

Keywords

References

  1. S. C. Oh, J. H. Ryu, H. Kwak, S. Y. Bae, and K. H. Lee, Thermal degradation of high molecular components obtained from pyrolysis of mixed waste plastics, J. Korean Ind. Eng. Chem., 19, 191-198 (2008).
  2. K. H. Lee, Thermal degradation of heavy pyrolytic oil in a batch and continuous reaction system, J. Anal. Appl. Pyrolysis, 86, 348-353 (2009). https://doi.org/10.1016/j.jaap.2009.08.004
  3. S. Karagoz, T. Karayildirim, S. Ucar, M. Yuksel, and J. Yanik, Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalysts, Fuel, 82, 415-423 (2003). https://doi.org/10.1016/S0016-2361(02)00250-8
  4. P. Klimantos, N. Koukouzas, A. Katsiadakis, and E. Kakaras, Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment, Energy, 34, 708-714 (2009). https://doi.org/10.1016/j.energy.2008.04.009
  5. G. Luc, P. Maria, V. Razvan, B. Jerome, T. Mohabd, G. Benny, and H. Ulrik, Numerical investigation of the partial oxidation in a two-stage down draft gasifier, Fuel, 87, 1383-1393 (2008). https://doi.org/10.1016/j.fuel.2007.07.009
  6. Y. C. Byun, M. H. Cho, J. W. Chung, Y. S. Kim, J. H. Lee, C. R. Lee, and S. M. Hwang, Plant test of thermal plasma process of pyrolysis/gasification/vitrification of municipal solid waste, Environ. Sci. Technol., 44, 6680-6687 (2010). https://doi.org/10.1021/es101244u
  7. N. Sanjel, J. H. Gu, W. T. Kwon, and S. C. Oh, A Study on the combustion characteristics of pelletized and fluff RDF (refuse derived fuel), Appl. Chem. Eng., 23, 333-338 (2012).

Cited by

  1. Improvement of Acid Digestion Method by Microwave for Hazardous Heavy Metal Analysis of Solid Refuse Fuel vol.35, pp.7, 2018, https://doi.org/10.9786/kswm.2018.35.7.616
  2. The Investigation of Emission Characteristics and Emission Factor of N2O at Solid Refuse Fuel Incinerator vol.41, pp.2, 2015, https://doi.org/10.4491/ksee.2019.41.2.82