References
- B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195, 2419-2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
- E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, Energy storage devices for future hybrid electric vehicles, J. Power Sources, 168, 2-11 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
- C. J. Rydh and B. A. Sanden, Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements, Energy Convers. Manage., 46, 1957-1979 (2005). https://doi.org/10.1016/j.enconman.2004.10.003
- S. Chu and A. Majumdar, Opportunities and Challenges for a Sustainable Energy Future, Nature, 488, 294-303 (2012). https://doi.org/10.1038/nature11475
- J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 4, 56-72 (2011). https://doi.org/10.1039/C0EE00281J
- S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136, 303-306 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.014
- J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium- alloy anodes have a chance in lithium-ion batteries?, J. Power Sources, 68, 87-90 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5
- T. D. Hatchard and J. R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon, J. Elctrochem. Soc., 151, 838-842 (2004). https://doi.org/10.1149/1.1739217
- N. S. Choi, K. H. Yew, K. Y. Lee, M. S. Sung, H. Kim, and S. S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161, 1254-1259 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.049
- M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta, 45, 31-50 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
- X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles during Lithiation, ACS Nano, 6, 1522-1531 (2012). https://doi.org/10.1021/nn204476h
- L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi, and X. Zhang, Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 5, 21-25 (2013). https://doi.org/10.1021/am3027597
- H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310-315 (2012). https://doi.org/10.1038/nnano.2012.35
- S. Song, S. W. Kim, D. J. Lee, Y. G. Lee, K. M. Kim, C. H. Kim, J. K. Park, Y. M. Lee, and K. Y. Cho, Flexible Binder-Free Metal Fibril Mat-Supported Silicon Anode for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 6, 11544-11549 (2014). https://doi.org/10.1021/am502221f
- F. M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, and I. J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, J. Power Sources, 196, 2128-2134 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.025
- J. Li, D. B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55, 2991-2995 (2010). https://doi.org/10.1016/j.electacta.2010.01.011
- A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Appl. Mater. Interfaces, 2, 3004-3010 (2010). https://doi.org/10.1021/am100871y
- N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, and C. Chen, Improvement of cyclability of Si as anode for Li-ion batteries, J. Power Sources, 192, 644-651 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.017
- Y. Lee, J. Choi, M. H. Ryou, and Y. M. Lee, Polymeric Materials for Lithium-Ion Batteries (Separators and Binders), Polym. Sci. Technol., 24, 603-611 (2013).
- M. Yoo, C. W. Frank, S. Mori, and S. Yamaguchi, Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer, 44, 4197-4204 (2003). https://doi.org/10.1016/S0032-3861(03)00364-1
- C. R. Jarvis, W. J. Macklin, A. J. Macklin, N. J. Mattingley, and E. Kronfli, Use of grafted PVDF-based polymers in lithium batteries, J. Power Sources, 97-98, 664-666 (2001). https://doi.org/10.1016/S0378-7753(01)00696-6
- S. J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S. Battaglia, W. Yang, and G. Liu, Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries, J. Am. Chem. Soc., 137, 2565-2571 (2015). https://doi.org/10.1021/ja511181p
- H. K. Park, B. S. Kong, and E. S. Oh, Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries, Electrochem. Commun., 13, 1051-1053 (2011). https://doi.org/10.1016/j.elecom.2011.06.034
- S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, J. Phys. Chem., 115, 13487-13495 (2011).
- N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder, J. Power Sources, 177, 590-594 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.082
- J. Choi, K. Kim, J. Jeong, K. Y. Cho, M. H. Ryou, and Y. M. Lee, Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7, 14851-14858 (2015). https://doi.org/10.1021/acsami.5b03364
- T. Matsumoto and T. Kurosaki, Soluble and Colorless Polyimides from Bicyclo [2.2.2] octane-2, 3, 5, 6-tetracarboxylic 2, 3: 5, 6-Dianhydrides, Macromol., 30, 993-1000 (1997). https://doi.org/10.1021/ma961307e
- K. Faghihi, M. Hajibeygi, and M. Shabanian, Synthesis and properties of new photosensitive and chiral poly(amide-imide)s based on bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic diimide and dibenzalacetonemoieties in the main chain, Polym. Int., 59, 218-226 (2010).
- Y. Tsuda, Y. Tanaka, K. Kamata, N. Hiyoshi, S. Mataka, Y. Matsuki, M. Nishikawa, S. Kawamura, and N. Bessho, Soluble polyimides based on 2, 3, 5-tricarboxycyclopentyl acetic dianhydride, Polym. J., 29, 574-579 (1997). https://doi.org/10.1295/polymj.29.574
- S. H. Ha, A study on the synthesis and characteristics of soluble, thermal resistance polyimides using DAM(2,4-diamino mesitylene), MS Dissertation, Yonsei University, Seoul, Korea (1999).
- L. Zhai, S. Yang, and L. Fan, Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines, Polymer, 53, 3529-3539 (2012). https://doi.org/10.1016/j.polymer.2012.05.047
- B. Son, M. H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Kim, and Y. M. Lee, Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS, ACS Appl. Mater. Interfaces, 6, 526-531 (2014). https://doi.org/10.1021/am404580f
Cited by
- Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS vol.19, pp.13, 2018, https://doi.org/10.1002/cphc.201800072