DOI QR코드

DOI QR Code

Soluble Polyimide Binder for Silicon Electrodes in Lithium Secondary Batteries

리튬이차전지 실리콘 전극용 용해성 폴리이미드 바인더

  • Song, Danoh (Department of Chemical and Biological Eng., Hanbat National University) ;
  • Lee, Seung Hyun (Department of Organic Materials and Textile System Eng., Chungnam National University) ;
  • Kim, Kyuman (Department of Chemical and Biological Eng., Hanbat National University) ;
  • Ryou, Myung-Hyun (Department of Chemical and Biological Eng., Hanbat National University) ;
  • Park, Won Ho (Department of Organic Materials and Textile System Eng., Chungnam National University) ;
  • Lee, Yong Min (Department of Chemical and Biological Eng., Hanbat National University)
  • 송다노 (한밭대학교 화학생명공학과) ;
  • 이승현 (충남대학교 유기소재.섬유시스템공학과) ;
  • 김규만 (한밭대학교 화학생명공학과) ;
  • 유명현 (한밭대학교 화학생명공학과) ;
  • 박원호 (충남대학교 유기소재.섬유시스템공학과) ;
  • 이용민 (한밭대학교 화학생명공학과)
  • Received : 2015.09.01
  • Accepted : 2015.11.16
  • Published : 2015.12.10

Abstract

A solvent-soluble polyimide (PI) polymeric binder was synthesized by a two-step reaction for silicon (Si) anodes for lithium-ion batteries. Polyamic acid was first prepared through ring opening between two monomers, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA) and 4,4-oxydianiline (ODA), followed by condensation reaction. Using the synthesized PI polymeric binder (molecular weight = ~10,945), the coating slurry was then prepared and Si anode was fabricated. For the control system, Si anode based on polyvinylidene fluoride (PVDF, molecular weight = ~350,000) having the same constituent ratio was prepared. During precycling, PI polymeric binder revealed much improved discharge capacity ($2,167mAh\;g^{-1}$) compared to that of using PVDF polymeric binder ($1,740mAh\;g^{-1}$), while the Coulombic efficiency of two systems were similar. PI polymeric binder improved the cycle retention ability during cycles compared to that of using PVDF, which is attributed to an improved adhesion property inside Si anode diminishing the dimensional stress during Si volume changes. The adhesion property of each polymeric binder in Si anode was confirmed by surface and interfacial cutting analysis system (SAICAS) (Si anode based on PI polymeric binder = $0.217kN\;m^{-1}$ and Si anode based on PVDF polymeric binder = $0.185kN\;m^{-1}$).

리튬이차전지 실리콘 전극에 활용하기 위해, 유기용매에 용해성이 있는 폴리이미드(Polyimide, PI) 고분자 바인더를 두 단계 반응을 이용해 합성하였다. 두 가지 단량체(Bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic Dianhydride (BCDA)와 4,4-oxydianiline (ODA))의 개환 반응 및 축합 반응을 통해 PI 고분자 바인더를 합성하였다. 합성된 PI 고분자 바인더를 이용해 실리콘(silicon, Si) 음극 전극을 제조하였다. 또한 비교군으로써, Polyvinylidene Fluoride (PVDF)을 고분자 바인더로 사용하는 동일 조성을 가진 실리콘 전극을 제조하였다. PI 바인더를 사용한 Si 전극($2167mAh\;g^{-1}$)의 초기 쿨롱 효율은 기존 PVDF 바인더 조성의 Si 전극($1,740mAh\;g^{-1}$)과 유사했지만, 방전용량은 크게 개선되었다. 특히 수명 특성에서는 PI 바인더를 사용한 Si 전극이 우수한 특성을 나타내었는데, 이는 PI 바인더를 사용한 Si 전극접착력($0.217kN\;m^{-1}$)의 전극 접착력이 PVDF를 사용한 Si 전극($0.185kN\;m^{-1}$)보다 높아, 실리콘 부피팽창에 의한 전극 구조 열화가 적절히 제어되었기 때문이라고 판단된다. Si 전극 내의 접착력은 surface and interfacial cutting analysis system (SAICAS) 장비를 통해 검증하였다.

Keywords

References

  1. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195, 2419-2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  2. E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, Energy storage devices for future hybrid electric vehicles, J. Power Sources, 168, 2-11 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
  3. C. J. Rydh and B. A. Sanden, Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements, Energy Convers. Manage., 46, 1957-1979 (2005). https://doi.org/10.1016/j.enconman.2004.10.003
  4. S. Chu and A. Majumdar, Opportunities and Challenges for a Sustainable Energy Future, Nature, 488, 294-303 (2012). https://doi.org/10.1038/nature11475
  5. J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci., 4, 56-72 (2011). https://doi.org/10.1039/C0EE00281J
  6. S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136, 303-306 (2004). https://doi.org/10.1016/j.jpowsour.2004.03.014
  7. J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium- alloy anodes have a chance in lithium-ion batteries?, J. Power Sources, 68, 87-90 (1997). https://doi.org/10.1016/S0378-7753(96)02547-5
  8. T. D. Hatchard and J. R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon, J. Elctrochem. Soc., 151, 838-842 (2004). https://doi.org/10.1149/1.1739217
  9. N. S. Choi, K. H. Yew, K. Y. Lee, M. S. Sung, H. Kim, and S. S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, 161, 1254-1259 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.049
  10. M. Winter and J. O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim. Acta, 45, 31-50 (1999). https://doi.org/10.1016/S0013-4686(99)00191-7
  11. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, Size-Dependent Fracture of Silicon Nanoparticles during Lithiation, ACS Nano, 6, 1522-1531 (2012). https://doi.org/10.1021/nn204476h
  12. L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi, and X. Zhang, Carbon-Coated Si Nanoparticles Dispersed in Carbon Nanotube Networks As Anode Material for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 5, 21-25 (2013). https://doi.org/10.1021/am3027597
  13. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310-315 (2012). https://doi.org/10.1038/nnano.2012.35
  14. S. Song, S. W. Kim, D. J. Lee, Y. G. Lee, K. M. Kim, C. H. Kim, J. K. Park, Y. M. Lee, and K. Y. Cho, Flexible Binder-Free Metal Fibril Mat-Supported Silicon Anode for High-Performance Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 6, 11544-11549 (2014). https://doi.org/10.1021/am502221f
  15. F. M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, and I. J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, J. Power Sources, 196, 2128-2134 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.025
  16. J. Li, D. B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55, 2991-2995 (2010). https://doi.org/10.1016/j.electacta.2010.01.011
  17. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid, ACS Appl. Mater. Interfaces, 2, 3004-3010 (2010). https://doi.org/10.1021/am100871y
  18. N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, and C. Chen, Improvement of cyclability of Si as anode for Li-ion batteries, J. Power Sources, 192, 644-651 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.017
  19. Y. Lee, J. Choi, M. H. Ryou, and Y. M. Lee, Polymeric Materials for Lithium-Ion Batteries (Separators and Binders), Polym. Sci. Technol., 24, 603-611 (2013).
  20. M. Yoo, C. W. Frank, S. Mori, and S. Yamaguchi, Effect of poly(vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithium ion battery, Polymer, 44, 4197-4204 (2003). https://doi.org/10.1016/S0032-3861(03)00364-1
  21. C. R. Jarvis, W. J. Macklin, A. J. Macklin, N. J. Mattingley, and E. Kronfli, Use of grafted PVDF-based polymers in lithium batteries, J. Power Sources, 97-98, 664-666 (2001). https://doi.org/10.1016/S0378-7753(01)00696-6
  22. S. J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V. S. Battaglia, W. Yang, and G. Liu, Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries, J. Am. Chem. Soc., 137, 2565-2571 (2015). https://doi.org/10.1021/ja511181p
  23. H. K. Park, B. S. Kong, and E. S. Oh, Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries, Electrochem. Commun., 13, 1051-1053 (2011). https://doi.org/10.1016/j.elecom.2011.06.034
  24. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries, J. Phys. Chem., 115, 13487-13495 (2011).
  25. N. S. Choi, K. H. Yew, W. U. Choi, and S. S. Kim, Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder, J. Power Sources, 177, 590-594 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.082
  26. J. Choi, K. Kim, J. Jeong, K. Y. Cho, M. H. Ryou, and Y. M. Lee, Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries, ACS Appl. Mater. Interfaces, 7, 14851-14858 (2015). https://doi.org/10.1021/acsami.5b03364
  27. T. Matsumoto and T. Kurosaki, Soluble and Colorless Polyimides from Bicyclo [2.2.2] octane-2, 3, 5, 6-tetracarboxylic 2, 3: 5, 6-Dianhydrides, Macromol., 30, 993-1000 (1997). https://doi.org/10.1021/ma961307e
  28. K. Faghihi, M. Hajibeygi, and M. Shabanian, Synthesis and properties of new photosensitive and chiral poly(amide-imide)s based on bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic diimide and dibenzalacetonemoieties in the main chain, Polym. Int., 59, 218-226 (2010).
  29. Y. Tsuda, Y. Tanaka, K. Kamata, N. Hiyoshi, S. Mataka, Y. Matsuki, M. Nishikawa, S. Kawamura, and N. Bessho, Soluble polyimides based on 2, 3, 5-tricarboxycyclopentyl acetic dianhydride, Polym. J., 29, 574-579 (1997). https://doi.org/10.1295/polymj.29.574
  30. S. H. Ha, A study on the synthesis and characteristics of soluble, thermal resistance polyimides using DAM(2,4-diamino mesitylene), MS Dissertation, Yonsei University, Seoul, Korea (1999).
  31. L. Zhai, S. Yang, and L. Fan, Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines, Polymer, 53, 3529-3539 (2012). https://doi.org/10.1016/j.polymer.2012.05.047
  32. B. Son, M. H. Ryou, J. Choi, T. Lee, H. K. Yu, J. H. Kim, and Y. M. Lee, Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS, ACS Appl. Mater. Interfaces, 6, 526-531 (2014). https://doi.org/10.1021/am404580f

Cited by

  1. Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS vol.19, pp.13, 2018, https://doi.org/10.1002/cphc.201800072