DOI QR코드

DOI QR Code

Multifarious activities of cellulose degrading bacteria from Koala (Phascolarctos cinereus) faeces

  • Received : 2014.09.30
  • Accepted : 2015.05.25
  • Published : 2015.07.31

Abstract

Cellulose degrading bacteria from koala faeces were isolated using caboxymethylcellulose-Congo red agar, screened in vitro for different hydrolytic enzyme activities and phylogenetically characterized using molecular tools. Bacillus sp. and Pseudomonas sp. were the most prominent bacteria from koala faeces. The isolates demonstrated good xylanase, amylase, lipase, protease, tannase and lignin peroxidase activities apart from endoglucanase activity. Furthermore many isolates grew in the presence of phenanthrene, indicating their probable application for bioremediation. Potential isolates can be exploited further for industrial enzyme production or in bioremediation of contaminated sites.

Keywords

References

  1. Macauley BJ, Fox LR. Variation in total phenols and condensed tannins in Eucalyptus: leaf phenology and insect grazing. Aust J Ecol. 1980;5:31-5. https://doi.org/10.1111/j.1442-9993.1980.tb01229.x
  2. Cork SJ, Pahl L. The possible influence of nutritional factors on diet and habitat selection by the ringtail possum (Pseudocheirus peregrinus). In: Smith AP, Hume ID, editors. Possums and gliders. Sydney: Australian Mammal Society; 1984. p. 269-76.
  3. Cork SJ, Hume ID, Dawson TJ. Digestion and metabolism of a natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol B. 1983;153:181-90. https://doi.org/10.1007/BF00689622
  4. Osawa R, Mitsuoka T. Selective medium for enumeration of tannin-protein complex-degrading Streptococcus spp. in feces of koalas. Appl Environ Microbiol. 1990;56:3609-11.
  5. Osawa R. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl Environ Microbiol. 1990;56:829-31.
  6. Osawa R, Walsh TP, Cork SJ. Metabolism of tannin-protein complex by facultatively anaerobic bacteria isolated from koala feces. Biodegradation. 1993;4:91-9. https://doi.org/10.1007/BF00702325
  7. Osawa R, Bird PS, Harbrow DJ, Ogimoto K, Seymour GJ. Microbiological studies of the intestinal microflora of the koala, Phascolarctos cinereus. I. Colonisation of the caecal wall by tannin-protein-complex-degrading enterobacteria. Aust J Zool. 1993;41:599-609. https://doi.org/10.1071/ZO9930599
  8. Nemoto K, Osawa R, Hirota K, Ono T, Miyake Y. An investigation of gramnegative tannin-protein complex degrading bacteria in fecal flora of various mammals. J Vet Med Sci. 1995;57:921-6. https://doi.org/10.1292/jvms.57.921
  9. Peterson RA, Bradner JR, Roberts TH, Nevalainen KMH. Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates. Lett Appl Microbiol. 2009;48:218-25. https://doi.org/10.1111/j.1472-765X.2008.02513.x
  10. Peterson R, Grinyer J, Nevalainen H. Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol Prog. 2011;10:207-18. https://doi.org/10.1007/s11557-010-0690-5
  11. Bhat MK. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18:355-83. https://doi.org/10.1016/S0734-9750(00)00041-0
  12. Green SJ, Leigh MB, Neufeld JD. Denaturing Gradient Gel Electrophoresis (DGGE) for microbial community analysis. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer; 2010. p. 4137-58.
  13. Hendricks CW, Doyle JD, Hugley B. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Appl Environ Microbiol. 1995;61:2016-9.
  14. Pointing SB. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 1999;2:17-33.
  15. Jacobs MB, Gerstein MJ. Handbook of Microbiology. Princeton: D Van Nostrand Co. Inc; 1960.
  16. Akpan I, Bankole MO, Adesemowo AM. A rapid plate culture method for screening of amylase producing micro-organisms. Biotechnol Technol. 1999;13:411-3. https://doi.org/10.1023/A:1008965808641
  17. Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol. 1987;53:211-3.
  18. Taechapoempol K, Sreethawong T, Rangsunvigit P, Namprohm W, Thamprajamchit B, Rengpipat S, et al. Cellulase-producing bacteria from Thai higher termites, Microcerotermes sp.: enzymatic activities and ionic liquid tolerance. Appl Biochem Biotechnol. 2011;164:204-19. https://doi.org/10.1007/s12010-010-9128-4
  19. Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, et al. Isolation and characterization of Polycyclic Aromatic Hydrocarbon-degrading Mycobacterium isolates from soil. Microb Ecol. 2004;48:230-8. https://doi.org/10.1007/s00248-003-1044-5
  20. Ling J, Zhang G, Sun H, Fan Y, Ju J, Zhang C. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Sci Total Environ. 2011;409:1994-2000. https://doi.org/10.1016/j.scitotenv.2011.02.020
  21. Muyzer G, De Waal EC, Uitterlinden AG. MEGA5: profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695-700.
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731-9. https://doi.org/10.1093/molbev/msr121
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368-76. https://doi.org/10.1007/BF01734359
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25.
  25. Ushakova NA, Belov LP, Varshavski AA, Kozlova AA, Kolganova TV, Boulygina ES, et al. Cellulose decomposition under nitrogen deficiency by bacteria isolated from the intestines of phytophagous vertebrates. Microbiology. 2003;72:356-62. https://doi.org/10.1023/A:1024264419393
  26. Goel G, Puniya AK, Singh K. Phenotypic characterization of tannin-protein complex degrading bacteria from faeces of goat. Small Rumin Res. 2007;69:217-20. https://doi.org/10.1016/j.smallrumres.2005.12.015
  27. Zhang B, Jiang D, Zhou W, Hao H, Niu T. Isolation and characterization of a new Bacillus sp. 50-3 with highly alkaline keratinase activity from Calotes versicolor faeces. World J Microbiol Biotechnol. 2009;25:583-90. https://doi.org/10.1007/s11274-008-9926-9
  28. Kim B, Al-Tai AM, Kim SB, Somasundaram P, Goodfellow M. Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int J Syst Evol Microbiol. 2000;50:505-9. https://doi.org/10.1099/00207713-50-2-505
  29. Velazquez E, de Miguel T, Poza M, Rivas R, Rossello-Mora R, Villa TG. Paenibacillus favisporous sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol. 2004;54:59-64. https://doi.org/10.1099/ijs.0.02709-0
  30. Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP. Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res. 1999;103:696-700. https://doi.org/10.1017/S0953756298007655
  31. Mahasneh AM, Stewart DJ. A medium for detecting ${\beta}$-(1$\rightarrow$3) glucanase activity in bacteria. J Appl Bacteriol. 1980;48:457-8. https://doi.org/10.1111/j.1365-2672.1980.tb01035.x
  32. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;43:777-80.
  33. Sahu NP, Kamra DN. Microbial eco-system of the gastro-intestinal tract of wild herbivorous animals. J Appl Anim Res. 2002;21:207-30. https://doi.org/10.1080/09712119.2002.9706370
  34. Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, Aars J, et al. Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiol. 2010;10:10. https://doi.org/10.1186/1471-2180-10-10
  35. Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, et al. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol. 2011;153:124-33. https://doi.org/10.1016/j.vetmic.2011.05.021
  36. Jia J, Frantz N, Khoo C, Gibson GR, Rastall RA, McCartney AL. Investigation of the faecal microbiota of geriatric cats. Lett Appl Microbiol. 2011;53:288-93. https://doi.org/10.1111/j.1472-765X.2011.03105.x
  37. Akbalik G, Gunes H, Yavuz E, Yasa I, Harsa S, Elmaci ZS, et al. Identification of extracellular enzyme producing alkalophilic bacilli from Izmir province by 16S-ITS rDNA RFLP. J Appl Microbiol. 2004;97:766-73. https://doi.org/10.1111/j.1365-2672.2004.02357.x
  38. Laukova A, Simonova M, Strompfova V, Styriak I, Ouwehand AC, Varady M. Potential of enterococci isolated from horses. Anaerobe. 2008;14:234-6. https://doi.org/10.1016/j.anaerobe.2008.04.002
  39. Balcazar JL, Pintado J, Planas M. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus). Int J Syst Evol Microbiol. 2010;60:892-5. https://doi.org/10.1099/ijs.0.011817-0
  40. Maheswaran S, Sreeramanan S, Reena Josephine CM, Marimuthu K, Xavier R. Occurrence of Bacillus thuringiensis in faeces of herbivorous farm animals. Afr J Biotechnol. 2010;9:8013-9. https://doi.org/10.5897/AJB10.1253
  41. Bettelheim KA, Kuzevski A, Gilbert RA, Krause DO, McSweeney CS. The diversity of Escherichia coli serotypes and biotypes in cattle faeces. J Appl Microbiol. 2005;98:699-709. https://doi.org/10.1111/j.1365-2672.2004.02501.x
  42. Rada V, Vlkova E, Nevoral J, Trojanova I. Comparison of bacterial flora and enzymatic activity in faeces of infants and calves. FEMS Microbiol Lett. 2006;258:25-8. https://doi.org/10.1111/j.1574-6968.2006.00207.x
  43. Clauss M, Wittenbrink MM, Castell JC, Kienzle E, Dierenfeld ES, Flach EJ, et al. Quantification of enterobacteriaceae in faeces of captive black rhinoceros (Diceros bicornis) in relation to dietary tannin supplementation. J Anim Physiol Anim Nutr. 2008;92:29-34.
  44. Johnston MA, Porter DE, Scott GI, Rhodes WE, Webster LF. Isolation of faecal coliform bacteria from the American alligator (Alligator mississippiensis). J Appl Microbiol. 2010;108:965-73. https://doi.org/10.1111/j.1365-2672.2009.04498.x
  45. Behrendt U, Ulrich A, Schumann P. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol. 2003;53:1461-9. https://doi.org/10.1099/ijs.0.02567-0
  46. Bajpai P. Biological bleaching of chemical pulps. Crit Rev Biotechnol. 2004;24:1-58. https://doi.org/10.1080/07388550490465817
  47. de Souza PM, e Magalhaes PO. Application of microbial $\alpha$-amylase in industry-a review. Braz. J Microbiol. 2010;41:850-61.
  48. Aguilar CN, Rodríguez R, Gutierrez-Sanchez G, Augur C, Favela-Torres E, Prado-Barragan LA, et al. Microbial Tannases: advances and perspectives. Appl Microbiol Biotechnol. 2007;76:47-59. https://doi.org/10.1007/s00253-007-1000-2
  49. Saxena RK, Ghosh PK, Gupta R, Davidson WS, Bradoo S, Gulati R. Microbial lipases: potential biocatalysts for the future industry. Curr Sci. 1999;77:101-15.
  50. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62:597-635.
  51. Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, et al. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: Degradation and microbial community analysis. Biodegradation. 2008;19:247-57. https://doi.org/10.1007/s10532-007-9131-9
  52. Leontievsky AA, Myasoedova NM, Baskunov BP, Evans CS, Golovleva LA. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation. 2000;11:331-40. https://doi.org/10.1023/A:1011154209569
  53. Lu XY, Zhang T, Fang HHP. Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol. 2011;89:1357-71. Submit https://doi.org/10.1007/s00253-010-3072-7

Cited by

  1. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion vol.5, pp.None, 2015, https://doi.org/10.7717/peerj.4075
  2. Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus vol.49, pp.2, 2015, https://doi.org/10.1016/j.bjm.2017.05.010
  3. Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut vol.8, pp.2, 2015, https://doi.org/10.3390/microorganisms8020309
  4. Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods vol.51, pp.1, 2015, https://doi.org/10.1007/s42770-019-00162-7
  5. We and herbivores eat endophytes vol.14, pp.4, 2015, https://doi.org/10.1111/1751-7915.13688