DOI QR코드

DOI QR Code

Extraction and analysis of doppler frequency of wind turbines and effect on radar signals

산악지형에 설치된 풍력발전단지에 의한 도플러 주파수 추출 및 분석

  • Jung, Joo-Ho (Department of Electrical Engineering, Pohang University of Science and Technology) ;
  • Kang, Ki-Bong (Department of Electronic Engineering, Pukyong National University) ;
  • Kim, Min (Department of Electronic Engineering, Pukyong National University) ;
  • Kim, Jeung-Yuen (Korea Offshore Wind Power) ;
  • Park, Sang-Hong (Department of Electronic Engineering, Pukyong National University)
  • Received : 2015.09.07
  • Accepted : 2015.11.16
  • Published : 2015.11.30

Abstract

To supplement energy needs and take advantage of renewable energy sources, many wind farms are currently being built in mountainous areas under the supervision of the Korean government. However, operation of these wind farms can cause serious threats to national security due to Doppler modulation from the wind turbines causing interference with military radar operating in the vicinity. Therefore it is necessary to develop methods to analyze the Doppler frequency during the operation of wind turbines and the effect on radar signals. Based on modeling of the mountainous region, blockage analysis, turbine motion and the radar signals, this paper proposes a signal processing method to extract and analyze the Doppler frequency. Simulation results showed the change of Doppler frequency over time caused by the geometry of the mountainous area and the wind turbine.

현재 우리나라의 에너지 부족 문제를 해결하기 위하여 정부 주도로 다양한 산악지형에서 풍력발전단지가 건설되고 있다. 하지만 무분별하게 풍력발전단지를 건설 할 경우, 풍력발전기의 도플러 변조로 인하여 주변에 운용되고 있는 군사레이더에 심각한 방해 현상을 야기하여 국가 안보에 심각한 위협이 될 수 있다. 따라서 풍력발전기 작동을 고려한 레이더 신호분석 및 도플러 주파수 분석이 필요하다. 본 논문에서는 이러한 산악지형에 설치된 풍력발전단지로 인한 도플러 주파수 추출 및 분석을 위한 신호처리 기법을 제안한다. 제안된 기법은 산악지형 모델링, 차폐분석, 풍력발전기 운동 모델링 및 레이더 신호 모델링을 기반으로 한 방법이며, 시뮬레이션 결과 산악지형의 형태 및 풍력발전기의 운동에 따라 시변 하는 도플러 주파수를 추출되었다.

Keywords

References

  1. J. H. Jung, U. Lee, S. H. Kim, and S. H. Park, "Micro-Doppler analysis of Korean offshore wind turbine on the L-band radar", Progress in Electromagnetics Research, vol. 143, pp. 87-104, 2013. https://doi.org/10.2528/PIER13090401
  2. S. H. Suk, RCS Prediction of Complex Targets, Ph. D. Dissertation, Department of Electrical Engineering, Pohang University of Science and Technology, Korea, 2001.
  3. J. H. Jung, K. T. Kim, S. H. Kim, and S. H. Park, "Micro-Doppler extraction and analysis of the ballistic missile using RDA based on the real flight scenario", Progress in Electromagnetics Research M, vol. 37, pp. 83-93, 2014. https://doi.org/10.2528/PIERM14040804
  4. H. Gao, L. Xie, S. Wen, and Y. Kuang, "Micro-Doppler signature extraction from ballistic target with micro-motions", IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 4, pp. 1969-1982, 2010. https://doi.org/10.1109/TAES.2010.5595607
  5. B. Mahafza, MATLAB Simulations for Radar Systems Design Using MATLAB, Champman & Hall/CRC Press LLC, 2000.
  6. M. Soumekh, Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999.
  7. S. Qian, Introduction to Time-frequency and Wavelet Transforms, Prentice Hall, 2002.
  8. H. K. Park, A Study on the Comparison Between EMI/EMC Analysis Methods of Vessels in the UHF Region, M.S. Thesis, Department of Electrical Engineering, Pohang University of Science and Technology, Korea, 2008.

Cited by

  1. Measurement and Analysis for Scale Model of Wind Turbine Blade Using 24GHz Doppler Radar vol.18, pp.6, 2015, https://doi.org/10.14801/jkiit.2020.18.6.55