DOI QR코드

DOI QR Code

Fundamental research for the development of full spectral-atigue analysis software to consider hydroelasticity effects

유탄성 효과를 고려한 완전통계 피로해석 프로그램 개발을 위한 기초 연구

  • Park, Jun-Bum (Division of Navigation Science, Korea Maritime and Ocean University)
  • Received : 2015.06.30
  • Accepted : 2015.09.15
  • Published : 2015.11.30

Abstract

The purpose of this research is to develop a full-spectral fatigue analysis program, based on rigid-body ship motion analysis, in order to perform a full-spectral fatigue analysis that considers hydroelasticity effects. To gain credibility, fatigue analysis results of two ship types, performed by the developed program, were compared with those of a classification society, and it was found that both are identical. Full-spectral fatigue analysis considering hydroelasticity effects would be developed in further studies by including flexible-body ship motion analysis results and by supplementing the developed program with a wide-band fatigue damage model.

본 연구의 목적은 유탄성 효과를 고려한 완전통계 피로해석 프로그램을 구축하기 위한 기초 연구로 강체 선체운동을 바탕으로 한 완전통계 피로해석 프로그램을 구축하는 것이다. 프로그램의 신뢰성을 확보하기 위해 두 가지 선종에 대해 선급 피로해석 결과와 비교하였고, 결과가 일치함을 알 수 있었다. 향후 유탄성 선체운동 결과를 반영하고 광대역 피로손상 모델을 도입하면 유탄성 효과를 고려한 완전통계 피로해석 프로그램을 개발할 수 있을 것으로 사료된다.

Keywords

References

  1. Lloyd's Register, Guidance Notes on the Assessment of Global Design Loads of Large Container Ships and Other Ships Prone to Whipping and Springing, Draft Version 1.5, Lloyd's Register, 2014.
  2. R. E. D. Bishop and W. G. Price, Hydroelasticity of ships, Cambridge University Press, Cambridge, 1979.
  3. Y. Wu, Hydroelasticity of Floating Bodies, Ph.D. Dissertation, UK, Brunel University, 1984.
  4. S. E. Hirdaris, W. G. Price, and P. Temarel, "Twoand three-dimensional hydroelastic modeling of a bulker in regular waves", Marine Structures, vol. 16, pp. 627-658, 2003. https://doi.org/10.1016/j.marstruc.2004.01.005
  5. S. Malenica and J. T. Tuitman, "3D FEM-3D BEM model for springing and whipping analysis of ships", Proceedings of the International Conference on Design and Operation of Containerships, 2008.
  6. K. Iijima, T. Yao, and T. Moan, "Structural response of a ship in severe seas considering global hydroelastic vibrations", Marine Structures, vol. 21, pp. 420-445, 2008. https://doi.org/10.1016/j.marstruc.2008.03.003
  7. K. H. Kim, J. S. Bang, J. H. Kim, Y. Kim, S. J. Kim, and Y. Kim, "Fully coupled BEM-FEM analysis for ship hydroelasticity in waves", Marine Structures, vol. 33, pp. 71-99, 2013. https://doi.org/10.1016/j.marstruc.2013.04.004
  8. S. Y. Hong, B. W. Kim, J. H. Kim, H. G. Sung, Y. S. Kim, S. K. Cho, B. W. Nam, S. K. Choi, C. Y. Lee, D. W. Lim, and M. K. Kwon, Wave Induced Loads on Ships Joint Industry Project II - Final Report, MOERI Technical Report No. BSPIS503A-2207-2, MOERI, Korea, 2010.
  9. N. Bakkers, J. Tong, and J. B. Park, "Full Scale Measurements and Fatigue Damage Assessment on a Large Container Ship", Proceedings of the Annual Autumn Meeting The Society of Naval Architects of Korea, 2011.
  10. Lloyd's Register, Fatigue Design Assessment Level 3 Guidance on Direct Calculations, Lloyd's Register, UK, 2002.
  11. Det Norske Veritas, Fatigue Assessment of Ship Structures DNV Classification Notes No.30.7, Det Norske Veritas, Norway, 2010.
  12. American Bureau of Shipping, GUIDANCE NOTES ON SPECTRAL-BASED FATIGUE ANALYSIS FOR VESSELS, American Bureau of Shipping, USA, 2004.
  13. P. H. Wirsching and M. C. Light, "Fatigue under wide band random stresses", Journal of the Structural Division, ASCE(American Society of Civil Engineers), vol. 106, no. 7, pp. 1593-1607, 1980.
  14. J. Choung, K. S. Kim, J. M. Nam, J. B. Koo, M. S. Kim, Y. L. Shim, and H. S. Urm, "Study on applicability of frequency domain-based fatigue analysis for wide band gaussian process II : Wide band prediction models", Journal of the Society of Naval Architects of Korea, vol. 49, no. 4, pp. 359-366, 2012. https://doi.org/10.3744/SNAK.2012.49.4.359
  15. D. Benasciutti, Fatigue Analysis of Random Loadings, Ph.D. Dissertation, University of Ferrara, Italy, 2004.
  16. J. B. Park, J. M. Choung, and K. S. Kim, "A new fatigue prediction model for marine structures subject to wide band stress process", Ocean Engineering, vol. 76, no. 15, pp. 144-151, 2014. https://doi.org/10.1016/j.oceaneng.2013.11.002
  17. F. L. M. Violette and R.A. Shenoi, "On the fatigue performance prediction of ship structural details", Transactions of the Royal Institution of Naval Architects, vol. 141, 1998.
  18. Society of Naval Architects and Marine Engineers, Principles of naval architectures, SNAME, 1988.

Cited by

  1. Life extension of moss LNG carriers using full spectral fatigue analysis vol.40, pp.1, 2016, https://doi.org/10.5916/jkosme.2016.40.1.10
  2. Predicting the residual fatigue life of a cargo hull tank using a deep-learning technique vol.4, pp.3, 2015, https://doi.org/10.1080/25725084.2020.1795463