DOI QR코드

DOI QR Code

An Experimental Study on Braking Thermal Damage of Brake Disk Cover

브레이크 디스크 커버의 제동 열손상에 대한 실험적 연구

  • 고광호 (아주자동차대학 자동차계열) ;
  • 문병구 (아주자동차대학 자동차계열)
  • Received : 2015.09.24
  • Accepted : 2015.11.20
  • Published : 2015.11.28

Abstract

The disk cover is installed to protect brake disk and calliper and it's removed right before delivering to customers. The temperature of disk cover was measured driving test vehicles(2000cc, diesel) in this study. The highest temperature measured for the driving test(120km/h-braking(0.3G)-stop-120km/h-braking(0.5G)-stop) was $260{\sim}270^{\circ}C$ in the upper part of the disk cover and the temperature varied considerably around the disk cover. It can be inferred from this temperature distribution around the cover that the major heat transfer from hot disk to cover was through convection. In other words, the hot air generated by braking friction moved up to the upper part of the disk cover. And only the upper area of the disk cover was melted down during this driving test. The thickness of disk cover was increased to 1.0mm from 0.7mm and 1 paper of masking tape was pasted in the upper region of the disk cover. Then the cover endured the heated air formed by braking friction during the driving test.

디스크 커버는 브레이크 디스크 및 캘리퍼를 보호하기 위해 설치하고, 고객에게 인도되기 직전에 제거된다. 본 연구에서 디스크 커버의 온도는 주행 시험 차량(2000cc, 디젤)을 대상으로 측정되었다. 주행 시험(120km/h-제동(0.3G)-정지-120km/h-제동(0.5G)-정지)에서 측정된 최고 온도는 디스크 커버 상부에서 $260{\sim}270^{\circ}C$이었고, 디스크 커버 주위에 상당한 변화를 보였다. 이는 고온 디스크로부터 커버로의 주요 열전달이 대류를 통해서임을 커버 주위의 온도 분포로부터 추론 할 수 있다. 즉, 마찰 제동에 의해 발생된 고온의 공기가 디스크 커버 상부까지 올라간 것이다. 그리고 주행 시험 중에 디스크 커버의 상부 영역만이 용융되었다. 디스크 커버의 두께를 0.7mm부터 1.0mm로 증가시키고, 마스킹 테이프 1장을 디스크 커버 상부 영역에 부착하였다. 그 후에 디스크 커버는 주행 시험 시 마찰 제동에 의해 형성된 고온의 공기에도 변형되지 않았다.

Keywords

References

  1. C.H. Kim, "FE Analysis of Heat Transfer Rise with Hellical Grooved Vent of the Brake Disk", KSAE03-Y0023, 2003.
  2. S. K. Lee, B. Y. Sung, S. K. Ha, "Optimal Design of Ventilated Disc Brake Rotor", Transactions of Korean Society of Mechanical Engineers A. Vol. 24, No. 3, pp. 593-602, 2000. https://doi.org/10.22634/KSME-A.2000.24.3.593
  3. S. K. Rhee, "Friction Coefficient of Automotive Friction Materials - Its Sensitivity to Load, Speed, and Temperature", SAE 740415, pp. 1575-1580, 1974.
  4. C. K. Kim, B. Y. Sung, "Thermal Behavior Analysis of Disc Brake System During Quick Braking", Transactions of Korean Society of Mechanical Engineers A, Vol. 22, No. 6, pp. 1106-1113. 1998.
  5. H. I. Jung, H. M. Kim, "Investigation of Thermal Deformation in Brake Disk by FEM", KSAE04-Y0041, 2004.
  6. S. J. Jung, "Analysis of Heat Transfer, Guide Book for ANSYS Application(II)", Tae Sung S&E Inc., pp. 225-228, 2000.
  7. Y. Choi, J. W. Choi, H. M. Kim, Y. W. Seo, "Thermal Dissipation Performance of the Ventilated Brake Disc having Helical Grooved Vent", Journal of Korean Society of Precision Engineering, Vol. 21, No. 3, pp. 117-123, 2004.
  8. Y. J. Choi, S. J. Moon, J. H. Kim, S. H. Kim, "The Method of Green Data Center to Improve the Power Efficiency", Journal of Digital Convergence, Vol. 8, No. 3, pp. 181-197, 2010.
  9. S. M. Kim, "A Study on Thermal Analysis in Ventilated Disk Brake by FEM", Journal of Korean Society of Manufacturing Technology Engineers, Vol. 18, No. 5, pp. 544-549, 2009.
  10. J. T. Kim, B. J. Baek, "Thermal Behavior of Automotive Ventilated Disk Brake", Proc. of the 32nd Korean Society of Tribologists and Lubrication Engineers Conference, pp. 186-192, 2000.
  11. D. V. Rostato, "Material and Process Selection Handbook", Elsevier Science, pp. 123-125, 2004.
  12. K.K. Chung, J.Y.Park, K.O. Cha, "An Experimental Study on the Friction Characteristics of Brake pad for Automobile", KSAE95-17-0032.
  13. B. Blot, "Computation of Thermally Stressed Brake Disk", SAE 890086, 1986.
  14. C. H. Lim, B. C. Goo, "An Experimental Study for Development of Brake Disk Material", KSAE09-B0286, 2009.
  15. "Specification of 3M High performance Masking Tape2693", 3M FOD#1585, 2000.