DOI QR코드

DOI QR Code

동해 해수의 질소:인의 비

Seawater N/P ratio of the East Sea

  • 이동섭 (부산대학교 해양학과) ;
  • 노태근 (한국해양과학기술원 해양관측.자료실)
  • LEE, TONGSUP (Department of Oceanography, Pusan National University) ;
  • RHO, TAE-KEUN (Ocean Observation and Information Section, Korea Institute of Ocean Science and Technology)
  • 투고 : 2015.09.21
  • 심사 : 2015.11.24
  • 발행 : 2015.11.30

초록

해양에서 질소와 인은 해양의 주된 일차생산자인 식물플랑크톤의 성장을 제한하는 원소이다. 우연히도 대양 해수의 N/P 비는 16이란 상수를 보이며, 질산염과 아질산염의 몰농도를 인산염의 몰농도로 나눈 값으로 계산된다. 해양내부의 생태계 역학과 생지화학적 순환 이해에 아주 유용하게 쓰여왔다. 동해는 독자적인 해수연직순환 체제를 보유한 작은 대양의 특성을 가지고 있고 적절한 반응시간과 연구를 위한 접근성이 좋기 때문에 기후변화와 관련된 연구를 진행하기에 적합하고 N/P 비를 이용하여 기후변화에 관련된 환경변화에 관한 논문이 최근에 자주 발표되고 있다. 그런데 인용되는 N/P비는 논문마다 달라서 해석에 혼선을 빚기도 하므로 기존의 영양염 자료 가운데 자료의 품질에 대한 신뢰도가 높은 자료를 선별해서 동해 N/P비의 대표값을 찾아 보았다. 2000년도를 기준으로 동해 전체를 대상으로 계절적 수온약층 아래의 수심이 300 미터를 넘는 해수의 N/P는 $12.7{\pm}0.1$로 괄목할 만하게 좁은 범위로 나타났다. 향후 추가적인 연구를 통한 새로운 N/P 비 값이 제시되기 전까지는 본 연구에서 제시된 값이 사용되어 상이한 N/P 비로 인한 생지화학적인 순환과 생태계 반응에 대한 해석에서 혼선이 최소화 되기를 희망한다.

Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.

키워드

참고문헌

  1. Arrigo, K.R., 2004. Marine microorganisms and global nutrient cycles. Nature, 437: 349-355.
  2. Boyle, E.A. and J.M. Edmond, 1975. Copper in surface waters south of New Zealand. Nature 253: 107−109. https://doi.org/10.1038/253107a0
  3. Chen, C.-T.A., G.C. Gong, S.-L. Wang, and A.S. Bychkov, 1996. Redfield ratios and regeneration rates of particulate matter in the Sea of Japan as a model of closed system. Geophys Res Lett. 23(14): 1785−1788. doi: 10.1029/96GL01676.
  4. Chung, C.S., J.H. Shim, Y.C. Park, and S.G. Park, 1989. Primary productivity and nitrogenous nutrient dynamics in the East Sea of Korea. Sea, 24: 52−61. (in Korean)
  5. Geider, R. and J.L. Roche, 2002. Redfield revisited: variability of C:N/P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37: 1-17. https://doi.org/10.1017/S0967026201003456
  6. Kido, K. and M. Nishimura, 1973. Regeneration of silicate in the Ocean. J. Oceanogr., 29, 185−192, doi: 10.1007/BF02108525.
  7. Kim, I.-N., D.H. Min, and T. Lee, 2012. Deep Nitrate Deficit Observed in the highly oxygenated East/Japan Sea and its possible cause. Terr. Atmos. Ocean. Sci., 23(6): 671−683. https://doi.org/10.3319/TAO.2012.08.11.01(Oc)
  8. Kim, T.-H. and G. Kim, 2013. Changes in seawater N: P ratios in the northwestern Pacific Ocean in response to increasing atmospheric N deposition: Results from the East (Japan) Sea. Limnol. Oceanogr., 58(6): 1907-1914. https://doi.org/10.4319/lo.2013.58.6.1907
  9. Kim, T.-W., K. Lee, R.G. Najjar, H.-D. Jeong, and H.J. Jeong, 2011. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science, 334: 505-9, doi 10.1126/science.1206583.
  10. Klausmeier, C.A., E. Litchman, T. Daufresne, and S.A. Levin, 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429: 171-174. https://doi.org/10.1038/nature02454
  11. Lee, K.E., D.-J. Kang, and K.-R. Kim, 2001. Degree of $CaCO_3$ in the East Sea. J. Korean Soc. Oceanogr: The Sea, 6(4): 242-248.
  12. Lee, T., D. Kim , B.-K. Khim, and D.-L. Choi, 2010. Organic carbon cycling in Ulleung Basin sediments, East Sea. Ocean. Polar Res., 32(2): 145−156. https://doi.org/10.4217/OPR.2010.32.2.145
  13. Martiny, A.C. et al., 2014. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1:140048 doi: 10.1038/sdata.2014.48.
  14. Moon, C.H., H.S. Yang, and K.W. Lee, 1996. Regeneration processes of nutrients in the polar front area of the East Sea I. Relationship between water mass and nutrient distribution pattern in autumn. J. Korea. Fish. Soc., 29: 503−526. (in Korean)
  15. Morel, F.M.M., A.J. Milligan, and M.A. Saito, 2003. Marine bioinorganic chemistry: the role of trace metals in oceanic cycles of major nutrients. In The Oceans and Marine Chemistry (ed. H. Elderfield), vol. 6, Treatise on Geochemistry (ed. H. D. Holland and K.K. Turekian), pp. 113-43. Oxford: Elsevier-Pergamon.
  16. Planavsky, N.J., 2014. The elements of marine life. Nature Geoscience 7: 855−856. https://doi.org/10.1038/ngeo2307
  17. Redfield A.C., 1934. On the proportions of organic derivations in sea water and their relation to the composition of plankton. In James Johnstone Memorial Volume. (ed. R.J. Daniel). University Press of Liverpool, pp. 177-192.
  18. Redfield, A.C., 1958. The biological control of chemical factors in the environment. Am. Sci., 46: 205-221.
  19. Redfield, A.C., B.H. Ketchum, and F.A. Richards, 1963. 2. The influence of organisms on the composition of sea-water. In: The Sea, v. 2, edited by Hill, M.N. and others, Interscience, New York and London. pp. 26−77.
  20. Rho, T., E.-S. Kim, S.-H. Kahng, and S.-R. Cho, 2015. International trend towards comparability of global oceanic nutrient data: SCOR Working Group 147 (Towards Comparability of Global Oceanic Nutrient Data, COMPONUT) activity. Ocean Polar Res. 37: 225−233. https://doi.org/10.4217/OPR.2015.37.3.225
  21. Shim, J.H., S.R. Yang, and W.H. Lee, 1989. Phytohydrography and the vertical pattern of nitracline in the southern waters of the Korean East Sea in early spring. J. Kor. Soc. Oceanogr., 24: 15−28. (in Korean)
  22. The Redfield Ratio at 80. Nature Geoscience Focus (Dec. 2014).
  23. Weber, T. S. and C. Deutsch, 2010. Ocean nutrient ratios governed by plankton biogeography. Nature 467:550-554. doi:10.1038/nature09403.
  24. Yanagi, T., 2002. Water, salt, phosphorus and nitrogen budgets of the Japan Sea. J. Oceanogr., 58, 797−804, doi: 10.1023/A:1022815027968.
  25. Yang, H.S., S.S. Kim, C.G. Kang, and K.D. Cho, 1991. A study on sea water and ocean current in the sea adjacent to Korea Peninsula. III. Chemical characteristics of water masses in the polar front area of the central Korean East Sea. J. Korea. Fish. Soc., 24: 185−192. (in Korean)

피인용 문헌

  1. 동해 울릉도-독도해역에서 질소, 인, 철 첨가실험에 따른 식물플랑크톤의 성장 및 군집반응 vol.17, pp.11, 2016, https://doi.org/10.5762/kais.2016.17.11.186
  2. Current situation and future perspective for environmental standards of seawater: commencing with Certified Reference Materials (CRMs) for nutrients of distributing nutrients vol.29, pp.5, 2015, https://doi.org/10.5928/kaiyou.29.5_153
  3. Specific oceanographic characteristics and phytoplankton responses influencing the primary production around the Ulleung Basin area in spring vol.39, pp.2, 2015, https://doi.org/10.1007/s13131-020-1545-9
  4. Relationship of Spatial Phytoplankton Variability during Spring with Eutrophic Inshore and Oligotrophic Offshore Waters in the East Sea, Including Dokdo, Korea vol.9, pp.12, 2015, https://doi.org/10.3390/jmse9121455