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Abstract

Lack of a general matrix formula hampers implementation of the semi-partial correlation, also known as part
correlation, to the higher-order coefficient. This is because the higher-order semi-partial correlation calculation
using a recursive formula requires an enormous number of recursive calculations to obtain the correlation co-
efficients. To resolve this difficulty, we derive a general matrix formula of the semi-partial correlation for fast
computation. The semi-partial correlations are then implemented on an R package ppcor along with the partial
correlation. Owing to the general matrix formulas, users can readily calculate the coefficients of both partial and
semi-partial correlations without computational burden. The package ppcor further provides users with the level
of the statistical significance with its test statistic.
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1. Introduction

The partial and semi-partial (also known as part) correlations are used to express the specific portion of
variance explained by eliminating the effect of other variables when assessing the correlation between
two variables (James, 2002; Johnson and Wichern, 2002; Whittaker, 1990). The great number of
studies have been published using either partial or semi-partial correlations in many areas including
cognitive psychology (e.g., Baum and Rude, 2013), genomics (e.g., Fang et al., 2009; Kim and Yi,
2007; Zhu and Zhang, 2009), medicine (e.g., Vanderlinden et al., 2013), and metabolomics (e.g., Kim
et al., 2012; Kim and Zhang, 2013).

The partial correlation can be explained as the association between two random variables after
eliminating the effect of all other random variables, while the semi-partial correlation eliminates the
effect of a fraction of other random variables, for instance, removing the effect of all other random
variables from just one of two interesting random variables. The rationale for the partial and semi-
partial correlations is to estimate a direct relationship or association between two random variables.
The brief explanation follows to describe the main difference among the correlation, the partial cor-
relation and the semi-partial correlation. Suppose there are three random variables (or vectors), X,
Y and Z, and we are interested in the relationship (or association) between X and Y, for illustration
purposes. Three situations are taken into consideration as shown in Figure 1. The figure describes
three cases that (a) Z is correlated with none of X and Y, (b) only the random variable Y is correlated
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Figure 1: Graphical illustration of partial and semi-partial correlations among the three random variables X, Y,
and Z.
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with Z and (c) Z is correlated with both X and Y. Because Z is independent of both X and Y in Figure
1(a), the correlation, partial correlation and semi-partial correlation all should theoretically have the
identical value. When only Y is correlated with Z as shown in Figure 1(b), the partial correlation is
exactly same as the semi-partial correlation, but is different from the correlation. However, in case of
Figure 1(c), all three correlations are different from each other. For more details on the partial and
semi-partial correlations, refer to James (2002) and Whittaker (1990).

Several R packages have been developed only for the partial correlation. The R package corpcor
(Schafer and Strimmer, 2005a) provides the function cor2pcor () for computing partial correlation
from correlation matrix and vice versa. The function ggm.estimate.pcor (), which is built in the
package GeneNet (Schafer and Strimmer, 2005b), allows users to estimate the partial correlation for
graphical Gaussian models. The package PCIT (Watson-Haigh e? al., 2010) provides an algorithm for
calculating the partial correlation coefficient with information theory. The function partial.cor()
is included in Remdr (Fox, 2005) package for computing partial correlations. The package parcor
(Kramer et al., 2009) can be used for regularized estimation of partial correlation matrices. The qp
(Castelo and Roverato, 2006) package provides users with g-order partial correlation graph search al-
gorithm. The R package space (Peng et al., 2009) can be used for sparse partial correlation estimation.
However, none of these packages provide the level of significance for the partial correlation coeffi-
cient such as p-value and statistic. Furthermore, to our knowledge, there exists no R package
for semi-partial correlation calculation.

On the other hand, there is no attempt to reduce the computational burden of the higher-order semi-
partial correlation coefficients, while the higher-order partial correlation coefficients can be easily
calculated using the inverse variance-covariance matrix. This means that a recursive formula (e.g., see
Equation (2.2)) should be used for the higher-order semi-partial correlation calculation, hampering the
use of the semi-partial correlation for high-dimensional data, such as ‘omics’ data, due to its expensive
computation.

For these reasons, we derive a general matrix formula for the semi-partial correlation calculation
(see Equation (2.6)). Using this general matrix formula, the semi-partial correlation coefficient can
be simple but fast calculated. In order for the partial and the semi-partial correlations to be used
practically, an R package ppcor is further developed in the R system for statistical computing (R
Development Core Team, 2015). It provides a means for fast computing partial and semi-partial
correlation as well as the level of statistical significance. The package ppcor is publicly available
from CRAN at http://CRAN.r-project.org/package=ppcor and it is also available in the Supplementary
Material at CSAM homepage (http://csam.or.kr).

2. Partial and Semi-partial Correlations

Consider the random vector X = (xy, x2,...,X;,...,%,) where |X| = n. We denote the variance of
a random variable x; and the covariance between two random variables x; and x; as v; (= var(x;))
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and ¢;; (= cov(x;, x;)), respectively. The variance-covariance matrices of random vectors X and Xg
(S c{1,2,...,n} and |S| < n) are denoted by Cx and Cg, respectively, where Xs is a random sub-
vector of the random vector X. The correlation between two random variables x; and x; is denoted by

rij = cij/ (\vi V) (= corr(x;, x;)).
Definition 1. The partial correlation of x; and x; given x; is

Tij = Tik? jk

Tijk = —F/——— 2.1
[ 2 2
L—r; J1- ik
and the semi-partial correlation of x; with x; given xy is
Tij = Tik? jk
Tigjlky = — F7—- 2.2)
1- r2.k
J

Whittaker (1990) defined the partial correlation using the correlation between two residuals. In
fact, we can easily see that the definition in Whittaker (1990) is equivalent to the definition in Equation
(2.1). Using the above definition, we can readily obtain another version of the definitions of the partial
and the semi-partial correlation coefficients as follows.

Corollary 1. The partial correlation of x; and x; given xy, rii, is equal to
p i8 Jl q

-1
C[j — c,-kvk ij

corr(resid(ilk), resid(jlk)) = 2.3)

-1 -1
\/V,' — c,-kvk Cki \/Vj - cjkvk Ckj
and the semi-partial correlation of x; with x; given Xy, ri ik, is equal to

Vvar(resid(ilk)) cij — Cikvy k)

r,-j|k = (24)

b
i Vi V) = Cirvy e

where resid(ilk) = x; — X;(xy) and x;(x;) = c,-kv]:lxk.

Note that the proof of Corollary 1 is omitted since it is straightforward. Corollary 1 can be further
generalized to the case that there are two or more given variables. In other words, it can be extended to
the higher-order partial and the higher-order semi-partial correlations. To do this, we need to consider
the inverse variance-covariance matrix of X, Dy = C;(l. For the simplicity’s sake, we denote Dy as
[di;] and Cyx as [c;;], where d;; and c;; are the (i, /™ cell of the matrices Dy and Cy, respectively,
and 1 < i, j < n. Then the partial correlation between two variables given a set of variables can be
calculated by the following lemma.

Lemma 1. (Whittaker, 1990) The partial correlation of x; and x; given a random vector Xs (=
Xijy) rijis. is equal to

S — 2.5)
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where Xs (= X(; j)) is the random sub-vector of X after removing the random variables x; and x; and
its size is |S| (= |X| = 2).

Most R packages for calculation of the partial correlation use the matrix-based calculation which
is based on Equation (2.5), since this method is much less computationally expensive than the method
based on Equation (2.1). In this case, we have to calculate the inverse variance-covariance matrix Dy
in order to obtain the partial correlations for all pairs of the random variables of X. Fortunately, it can
be easily obtained with a simple code in R. For example, the partial correlation of x; and x; given X ;)
of X is the (i, j)"* cell of the following matrix:

R> -cov2cor(solve(cov(X)))

However, there is no matrix-based mathematical formula for the semi-partial correlation. Without
a general matrix formula, users have to calculate the higher-order semi-partial correlation through a
recursive formula in Equation (2.2), which is time-consuming for high-dimensional data. Therefore,
it is highly desirable to have a general matrix formula for the fast higher-order semi-partial correlation
calculation. In the next theorem, we drive a matrix-based mathematical formula for the semi-partial
correlation calculation.

Theorem 1. The semi-partial correlation of x; with x; given a random vector Xs (= X j), Fijis), iS
equal to

1 1

Jdii = did1dji €7

Proof: By Equation (2.4), we have the following equation

(2.6)

Tijis

var(resid(i|S))
Figjls) = Tijs — = 2.7

Vo
Then, using Equation (2.7) and Lemma 1, we have
dij  V|Cxl

M) =~ — —
! Vd; \ICs|+eq
d,'j

-1 Ci:

=Tl T ——

- Cii.
dij — dyjd;} dj;

J

O

Using Theorem 1, we can readily calculate the semi-partial correlation using several lines of an R
code. For example, the semi-partial correlation of x; with x; given X; j is the (i, 7)™ cell of the matrix
obtained in the last line of the following code.

R> cx <- cov(X)
R> dx <- solve(cx)
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R> pc <- -cov2cor(dx)
R> diag(pc) <- 1
R> pc/sqrt(diag(cx))/sqrt(abs(diag(dx)-t(t(dx"2)/diag(dx))))

It first calculates the variance-covariance matrix of X, which is cx, and its inverse variance-
covariance matrix, which is dx. Then the semi-partial correlations are obtained using the partial corre-
lations, which is pc, in the R code above. Note that when the determinant of variance-covariance ma-
trix is numerically zero, the R package ppcor computes its pseudo-inverse using the Moore-Penrose
generalized matrix inverse (Penrose, 1995). However, in this case, no statistics and p-values
are provided if the number of variables is greater than or equal to the sample size.

While, to our knowledge, no R packages provide the level of statistical significance for partial
correlation coefficient, the R package ppcor includes the calculation of statistics and p-values
of each correlation coefficient for both partial and semi-partial correlations. Moreover, ppcor pro-
vides users with nonparametric partial and semi-partial correlation coefficients based on Kendall’s
and Spearman’s rank correlations.

The statistics #;;s and f; sy of the partial and semi-partial correlation of x; and (with) x; given xg
(= x(,j) are calculated, based on the works in Weatherburn (1968) and Sheskin (2003), by

N-2-g ; N-2-g
- iGIS) = TGS A | T2
L =rips L= ris)

) (2.8)

lijis = Tijis

where N is the sample size and g is the total number of given (or controlled) variables. Using Equation
(2.8), their p-values are calculated by

pijis =20 (— |tijs|, N =2 - g); pigjis) = 2@ (— lticas| - N -2 - g), 2.9

where @,(-) is the cumulative density function of a Student’s ¢ distribution with the degree of freedom
N — 2 — g. It is known that the standard error is 1/ /N — 2 — g (Olkin and Finn, 1995; Stanley and
Doucouliagos, 2012; Sharma, 2012).

In case of Kendall’s rank correlation, the statistics are computed by (Abdi, 2007)

_ IN-g-2)(N—-g+1) B IN-g-2)(N-g+1) 210
Zijls = Tijis JON—-2g+1) G =T 2ON-2g+1) (2.10)

Using Equations (2.10), their p-values are calculated by

Dijis = 2@ (— |Zij|s |) Pigjis) = 2@ <— |Zi(j|S)|)a (2.11)

where ®@(-) is the cumulative density function of a standard normal distribution. The standard error is
\/2(2N —-2g+1)/ \/9(N —g-2)(N—g+ 1) (Abdi, 2007).

3. Examples

The R package ppcor provides users with four functions which are pcor (), pcor.test(), spcor(),
and spcor.test(). The function pcor() (spcor()) calculates the partial (semi-partial) correla-
tions of all pairs of two random variables of a matrix or a data frame and provides the matrices of
statistics and p-values of each pairwise partial (semi-partial) correlation. In order to compute
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the pairwise partial (semi-partial) correlation coefficient of a pair of two random variables given one
or more random variables, pcor.test() (spcor.test()) can be also used instead. We can see how
to use these functions through the following examples. First the test data, y.data, need to be created
after loading the package with the following R codes.

R> library(ppcor)

R> y.data <- data.frame(

hl = c(7,15,19,15,21,22,57,15,20,18),

disp = c(0,0.964,0,0,0.921,0,0,1.006,0,1.011),

deg = c(9,2,3,4,1,3,1,3,6,1),

BC = c(1.78e-02,1.05e-06,1.37e-05,7.18e-03,0,0,0,4.48e-03,2.10e-06,0)
)

+ o+ + 4+ o+

This test data, y.data, consists of 10 samples from four variables, hl, disp, deg, and BC. This
data set is available from Drummond et al. (2006) and Kim and Yi (2007). The original data cover
the relationship between sequence and functional evolutions in yeast proteins. Here we look at only
part of the large data for the illustrative purpose. Note that hl, disp, deg, and BC stand for half
life, dispensability, degree, and betweenness-centrality, respectively. Please refer to Drummond ef al.
(2006) and Kim and Yi (2007) for more details.

We can then calculate all pairwise partial correlations of each pair of two variables given other
variables with

R> pcor(x=y.data,method="spearman")

Then we obtain the following output:

festimate

hl disp deg BC
hl 1.0000000 -0.7647345 -0.1367596 -0.7860646
disp -0.7647345 1.0000000 -0.4845966 -0.4506273
deg -0.1367596 -0.4845966 1.0000000 0.4010940
BC -0.7860646 -0.4506273 0.4010940 1.0000000
$p.value

hl disp deg BC
hl 0.00000000 0.02708081 0.7467551 0.02071908
disp 0.02708081 0.00000000 0.2236095 0.26248897
deg 0.74675508 0.22360945 0.0000000 0.32471409
BC 0.02071908 0.26248897 0.3247141 0.00000000
$statistic

hl disp deg BC
hl 0.0000000 -2.907150 -0.3381686 -3.114899
disp -2.9071501 0.000000 -1.3569947 -1.236464
deg -0.3381686 -1.356995 0.0000000 1.072529
BC -3.1148991 -1.236464 1.0725286 0.0600000

$n
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[1] 10

$agp
[1] 2

$method
[1] "spearman"

The output has six values, estimate, which is the partial correlation coefficient, p-value, which is
the level of statistical significance, statistic, which is the test statistic for p-value, n, which is the
total number of samples, gp, which is the number of given or controlled variables, and method, which
is the used correlation method among Pearson’s, Kendall’s, and Spearman’s correlation methods. In
case that the users are interested in the partial correlation between hl and disp given deg and BC, we
can compute the partial correlation with

R> pcor.test(x=y.data$hl,y=y.data$disp,z=y.data[,c("deg","BC")]
+ ,method="spearman'")

Then we obtain the following output:

estimate p.value statistic n gp Method
1 -0.7647345 0.02708081 -2.90715 10 2 spearman

Similarly, the semi-partial correlations can be calculated with
R> spcor(x=y.data,method="spearman")
Then we obtain the following output:

$estimate

hl disp deg BC
hl 1.00000000 -0.4254609 -0.04949092 -0.4558649
disp -0.59319449 1.0000000 -0.27689034 -0.2522965
deg -0.06380762 -0.2560457 1.00000000 0.2023709
BC -0.42262366 -0.1677612 0.14551866 1.0000000

$p.value

hl disp deg BC
hl 0.0000000 0.2933025 0.9073559 0.2562889
disp 0.1211334 0.0000000 0.5067562 0.5466351
deg 0.8806850 0.5404845 0.0000000 0.6307871
BC 0.2968811 0.6912998 0.7309799 0.0000000

$statistic

hl disp deg BC
hl 0.0000000 -1.1515898 -0.1213762 -1.2545787
disp -1.8048658 0.0000000 -0.7058372 -0.6386584
deg -0.1566153 -0.6488095 0.0000000 0.5061789
BC -1.1422336 -0.4168368 0.3602815 0.0000000
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$n
[1] 10

$gp
[1] 2

$method
[1] "spearman"

The semi-partial correlation of hl with disp given deg and BC is calculated with

R> spcor.test(x=y.data$hl,y=y.data$disp,z=y.data[,c("deg","BC")]
+ ,method="spearman'")

Then we obtain the following output:

estimate p.value statistic n gp Method
1 -0.4254609 0.2933025 -1.15159 10 2 spearman

It should be noted that, if a general matrix formula for the semi-partial correlation is not avail-
able, users have to calculate all pairs of each variable with the function spcor.test using two loops.
To see how fast the general matrix formula can compute the semi-partial correlation, we compared
the computational time by generating a data matrix with the size of 500 x 100 (i.e., the number of
variables is 100 and the number of samples 500). When the function spcor () used, the total amount
of computation time was 0.02 second, while it took 135.33 second when the function spcor.test()
used with two loops. It demonstrates that the general matrix formula dramatically reduce the compu-
tational burden of the higher-order semi-partial correlation calculation. Note that this simulation was
implemented on a desktop with Intel Core 2 Duo CPU 3.00 GHz.

4. Conclusions

A general matrix formula for the semi-partial correlation is derived. Lack of this general matrix
formula has hampered implantation of the higher-order semi-partial correlation for high-dimensional
‘omics’ data analysis because it requires an enormous number of recursive calculations to obtain
the correlation coefficient when using a recursive formula in Equation (2.2). However, using the
derived matrix formula in Theorem 1, we can clearly see that the higher-order semi-partial correlation
coefficient is calculated as simple but fast as the partial correlation does. The developed R package
ppcor further provides users not only with a function to readily calculate the higher-order both partial
and semi-partial correlations but also with statistics and p-values of the correlation coefficients.

5. Computational Details

The results in this paper were obtained using R 3.2.2 with the package ppcor. R and the ppcor
package are available from CRAN at “http://CRAN.R-Project.org/ and in the Supplementary Material
at CSAM homepage (http://csam.or.kr). Note that, in this latest version of the package ppcor, the
p-values for Pearsons and Spearmans correlations are calculated based on the #-distribution and the
Moore-Penrose generalized inverse matrix will be used when variance-covariance matrix is singular.
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