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In this letter, the problem of estimating the physical layer 
(PL) scrambling code sequence of DVB-S2 is studied. We 
present the first ever scheme to estimate the scrambling 
sequence. The scheme is based on hypothesis testing. By 
analyzing the PL scrambling process, we construct a new 
sequence equivalent to the scrambling sequence. We then use 
hypothesis testing to estimate the new sequence. The threshold 
for the hypothesis testing is also discussed. The experiment 
results show that the performance of our estimation scheme 
can work even under high BER. 

Keywords: Hypothesis testing, DVB-S2, scrambling 
sequence. 

I. Introduction 

In the DVB-S2 system, the scrambling code sequence is 
unequivocally associated with each satellite operator or satellite 
or transponder [1]. For non-cooperative communication, we 
can identify the transmitter from the scrambling code sequence. 
Only after we obtain the scrambling code sequence can the 
physical layer frame (PLFrame) be recovered. Hence, 
estimation of the scrambling code sequence is very significant 
for non-cooperative communication. At present, research about 
scrambling code mainly focuses on the estimation of the 
generator polynomial. For example, when some input and 
scrambled bits are known, the Berlekamp-Massey (BM) 
algorithm can be used to reconstruct the feedback polynomial 
[2]. If only the scrambled bits are known, Cluzeau’s proposed 
algorithm can be used [3], [4]. The BM algorithm is based on 
the scrambling code sequence, but this algorithm does not 
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provide the solution obtaining the scrambling code sequence. 
Cluzeau’s algorithm is only applicable to a single-channel 
scrambled code sequence. Regarding the scrambled code 
sequence of DVB-S2, the scrambling code sequence is 
separated into the in-phase channel and the quadrature channel. 
Hence, Cluzeau’s algorithm is inapplicable to DVB-S2. The 
problem of estimating the scrambling code sequence, 
especially for DVB-S2, has yet to be solved. In this letter, we 
propose the first ever scheme to estimate the PL scrambling 
code sequence of DVB-S2.  

II. Physical Layer Scrambling of DVB-S2 

Prior to modulation, each PLFrame of DVB-S2, excluding 
the physical layer header (PLHeader), shall be randomized for 
energy by multiplying the (I+jQ) samples by a complex 
randomization sequence (CI+jCQ), as shown in Fig. 1. 

The scrambling sequence is constructed by combining two 
real m-sequences into a complex sequence. The resulting 
sequence thus constitutes segments of a set in a Gold sequence. 
Let x and y be the two sequences. The x sequence is 
constructed using the primitive polynomial 1+x7+x18. The y 
sequence is constructed using the polynomial 1+y5+y7+y10+y18. 

 

Fig. 1. PL scrambling of DVB-S2. 
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Table 1. Relationship between scrambled sequence and scrambling 
sequence. 

Rn CI 
 CQ 

 Iscrambled Qscrambled 
Iscrambled * 
Qscrambled

zn (i) 

0 1 0 I Q IQ 0 

1 0 1 – Q I –IQ 1 

2 –1 0 – I – Q IQ 0 

3 0 –1 Q – I –IQ 1 

 

 
The construction of m-sequences x and y is as follows [1]. 

The initial conditions are 

         0 1, 1 2 ... 16 17 0x x x x x          (1) 

and 

       0 1 ... 16 17 1y y y y     .
       

(2)
 

The recursive definition of subsequent symbols is 

   
      18 mod 7 ,2x i x i x i    ,        (3) 

          18 mod 10 7 5 ,2y i y i y i y i y i        , (4) 

where mod(,) is the modulus operator. The n-th Gold code 
sequence zn is then defined as [1] 

        18mod mod ,2 1 , 2nz i x i n y i      .   (5) 

The binary sequence is converted to integer-valued sequence  
Rn by the following transformation [1]: 

       182 mod 131072 ,2 1n n nR i z i z i    .  (6) 

Finally, the n-th complex scrambling code sequence, 

   I QC i jC i , is defined as [1] 

      exp π / 2I Q nC i jC i jR i  .          (7)
 

The relationship between the above-listed sequences is shown 
in Table 1. 

III. Estimation of Scrambling Code Sequence 

In this section, we assume that bit synchronization and frame 
synchronization are achieved. Therefore, we must only focus 
on the baseband signal. From Table 1, it can be observed that 
the Iscrambled sequence and Qscrambled sequence are both a mix of 
sequences I and Q. We cannot obtain the Gold code sequence  
zn(i) from either Iscrambled or Qscrambled. To recover the scrambling 
code sequence, we construct a new sequence, F, by 
multiplying Iscrambled and Qscrambled.  

 scrambled scrambled* * *F I Q S I Q  ,        (8) 

where  1 2, ,..., NS s s s  is an unknown sequence equivalent 
to the scrambling sequence obtained in the following and N is 
the PLFrame length. 

We regard the product of the I-Q sequence to be the input 
bits  1 2, ,..., NC c c c . 

*C I Q .                  (9) 

Rewrite (8) as 
*F S C .                 (10) 

From Table 1, we get 

   
   

1, | mod , 2 1 ,

1, | mod , 2 0 .

i n

i n

s i i R i

s i i R i

    


  

   (11) 

From (6), we can write 

    mod ,2n nz i R i .           (12) 

Comparing (11) and (12), we obtain 

   1 / 2n iz i s  .             (13) 

The problem of estimating the scrambling sequence zn now 
becomes the problem of estimating sequence S. 

Assuming the biased memoryless source sequence to be bi 

[2],  

  0 01 1/ 2 , 0iP b      .           (14) 

Then,  

  2
2 1 2 01 1/ 2 2 .k kP b b               (15) 

Rewriting 2
02  as ε, according to (9) and (15), we get 

 1 1/ 2 , 0iP c      .           (16) 

Each element of the v-th PLFrame of the PL      

scrambled sequence can be expressed as 

,0 ,1 , , 1, ,..., ,..., ,def
v v v v j v NF f f f f     where v = 0, 1, ..., K–1 and 

K is the PLFrame number, , , .v j v j jf c s  We use the sum of 

,v jf  to estimate the PL scrambling code sequence. 

, , ,
1 1 1

K K K

j v j v j j j v j
v v v

x f c s s c
  

     .         (17) 

The log likelihood ratio of ,v jc  can be facilitated by [5] 

  ,

,

,

1 1/ 2
ln ln

1/ 21

v j

C v j

v j
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.      (18) 

Then, we have 
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,          (19) 
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2 ,

1
1

1 C v j
v j c

P P c
e


     


.           (20) 

The following section, we shall illustrate two different cases. 
The first case is 0  , assuming two hypothesizes,  

0

1

: 1,

: 1.

j

j

H s

H s

 


                 (21) 

We get the probability distribution function (PDF) of each 
hypothesis. 
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      (22)

 

where   2j

K

K x

 
   

 means the number of combinations of K 

taken   2jK x  at a time.  
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If we use the Neyman-Pearson theorem [6], giving the 
probability of false alam (PFA) β=10–3, then 

      0:
; .

j j
FA j jx L x

P p x H dx


 


        (24) 

The likelihood ratio is 

     1 0; ; jx

j j jL x p x H p x H e  .      (25) 

Then, 

    
3

0:
; 10x j

j
FA j jx e

P p x H dx


 



  .     (26) 

From (23) and (26), we obtain 

37.0427  .               (27) 

According to (25), we can get  

ln / 18thx    .               (28) 

The probability of detection (PD) is [6] 

     1; 0.1343
j th

D th j jx x
P x p x H dx


  .    (29) 

The detection performance is poor. We use the difference of 
the PD and the PFA to determine the detection threshold for 
hypothesis testing. According to (25) and (26), we can write 

     

 
0:

log 0

;

; .

j j

e
j

FA j jx L x

j jx

P p x H dx

p x H dx








   








         (30) 

 

Fig. 2. PD, PFA, and their difference. 
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Rewriting    as loge 


, we get 

     0; .
j

FA j jx
P p x H dx





            (31) 

Unify the variable in (29) and (31) as α and calculate the 
difference of the PD and the PFA. 

     _D FA D FAP P P    ,        (32) 

as shown in Fig. 2. 
Then, we calculate the threshold xth from the following 

equality instead of from (26): 

       _| maxth D FA D FAx P P P      .   (33) 

Using the new threshold, we get the estimation rule. 

 
ˆ 1, ,

ˆ 1, .

j j th

j j th

s x x

s x x

  
  

              (34) 

When ε < 0, then, (22) and (23) can be rewritten as 
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We get the following estimation rule: 

ˆ 1, ,

ˆ 1, .

j j th

j j th

s x x

s x x

 
   

            (37)

 

IV. Numerical Results 

To validate the estimation scheme performance, simulation  
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Fig. 3. Performance of estimation under different ε. 
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Fig. 4. Performance of estimation under different BER. 
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experiments are conducted under different situations. Firstly, 
the BER of the PL scrambled sequence is 0.1. As illustrated in 
Fig. 3, the performance of estimation decreases when ε lessens. 
In other words, we need more PLFrames to estimate the 
scrambling code sequence. 

Secondly, when ε is 0.075, the BERs of the PL scrambled 
sequence are chosen as variable values. Figure 4 shows that the 
estimation accuracy slightly decreases as the BER increases. 
When the frame number is larger than 2,000, the estimation 
accuracy is still bigger than 0.8, even when the BER=0.3. 
Although the estimation accuracy is less than 0.7 when the 
frame number is 500, it is enough for us to obtain the 
scrambling sequence. According to [1], sequences x and y are 
invariable. If we are able to obtain the order n of Gold code 
sequence Zn, as in (5), we can then obtain the whole 
scrambling code sequence. From (5) and (13), we can get 

ˆˆ ( ) (1 ) / 2,n jz i s  18ˆ ˆ(mod(( ), 2 1)) mod( ( ) ( ), 2).nx i n z i y i   
Then, we calculate the cross correlation of x(i) 

and 18ˆ(mod(( ), 2 1)).x i n   The value of the x coordinate 
corresponding to the maximum is of order n. 

V. Conclusion 

A robust estimation scheme of the PL scrambling code 

sequence was presented in this letter. The scheme is based on 
the hypothesis testing of a new estimation variable. As for the 
judgment threshold, we proposed a new get method instead of 
using the Neyman-Pearson theorem. We considered the 
probability of detection and the probability of false alarm. The 
simulation results show that the performance of our estimation 
scheme can work even under high BER. 
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