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In this paper, the optimal power control problem in a 
cooperative relay network is investigated and a new power 
control scheme is proposed based on a non-cooperative 
differential game. Optimal power allocated to each node 
for a relay is formulated using the Nash equilibrium in this 
paper, considering both the throughput and energy 
efficiency together. It is proved that the non-cooperative 
differential game algorithm is applicable and the optimal 
power level can be achieved. 
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I. Introduction 

Cooperative communications have been proposed for an 
enhancement in the performance of wireless networks [1] and 
to achieve cooperative diversity for improving network 
coverage and capacity [2]. A relay-cooperation transmission 
can be seen as a kind of cooperative communication, in which 
a relay station helps to forward data between mobile stations 
and base stations. In a relay-cooperation transmission, an 
increase in the power level of one node always results in more 
interference in the other nodes, caused by the simultaneous 
transmissions on nearby links [3]. Meanwhile, a higher power 
level causes more energy to be expended. For the above 
reasons, it is essential to design an enabling power control 
approach to alleviate co-channel interference in cooperative 
relay networks [4]. 

Generally, power control is considered for maximizing 
throughput or minimizing energy consumption [5]. The power 
control for relay-cooperation transmissions is challenging 
owing to the fact that the power control strategies of relay 
nodes influence each other and decisions are made 
dynamically under competition. Each relay node can 
competitively allocate the power level in a dynamic manner 
such that their individual target system performance can be 
achieved. The throughput maximization and energy 
consumption minimization are intertwined, and the power 
control scheme should therefore consider these two 
fundamentally conflicting objectives concurrently.  

A few works have been conducted on power control in 
cooperative relay networks [6]-[9]. In [6], sub-carrier and 
power allocations are considered to obtain a better BER 
performance. In [7], the power control is considered to increase 
the energy efficiency combing selective-relay cooperative 
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communications. Game theory can be used to solve resource 
allocation problems of systems with conflicting components, 
and can be used in cooperative relay networks for settling the 
power control problems of relay nodes. Game theory has 
recently received increasing interest in the context of 
cooperative relay networks [3], [8], [9]. The problem of power 
control becomes more challenging when the relay nodes are 
non-cooperative, which motivates the use of game theory in 
research on ascertaining the importance of power control. In 
[3], the authors consider the multi-user power control problem 
in Gaussian frequency-flat interference relay channels using a 
game-theoretic framework. In [8], the energy efficiency of each 
user is maximized based on game theory and is measured in 
bits/joule. A game-theory-based decentralized relay selection 
scheme and a power allocation protocol were introduced in [9] 
to achieve a significant reduction in power consumption and an 
improvement in payoff. 

The novelty of our work is in considering a differential game-
based power control scheme to increase network throughput 
and minimize energy consumption. Differential games or 
continuous-time infinite dynamic games are used to study a 
class of decision problems, under which the evolution of the 
state is described by a differential equation and the players act 
throughout a time interval. Through a comparison with existing 
algorithms, a different optimal objective and a new non-
cooperative differential-game-based power control scheme to 
obtain the Nash equilibrium for power control is proposed in 
this paper. Our model will take the objective of minimizing the 
total transmission cost with a tradeoff between network 
throughput and energy consumption. Relay nodes act as 
rational, selfish players competing in a differential game to 
obtain the optimal transmit power and minimize their own 
transmission cost. 

The rest of this paper is organized as follows. The system 
model and problem statement are given in section II. Section 
III presents non-cooperative game solutions to the power 
control problem. Section IV provides the simulation results, 
and section V offers some concluding remarks regarding our 
proposal. 

II. System Model and Problem Statement 

We consider the uplink of a relay-assisted network with K 
users (game players) denoted by {1, 2, , }.K    Each user 
is assigned a given channel (assumed to be orthogonal, 
typically in the frequency domain). A decode-and-forward 
protocol is considered in this model, in which the signals have 
to be decoded at the relay before being forwarded. User i can 
serve as a relay node for other users. Let D(i) denote the set of 
these users. Let pi(s) denote the direct transmission power of  
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user i by time s, and pi,j(s) denote the transmission power in 
relaying the message of user j. Let  _ max

i
RP s  denote the 

maximum allowable power for a relay, and we  
then have    , , _ max
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transmission energy of player i during time interval [0, T] is a 
predetermined positive constant. 
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Equation (1) can be transformed into a differential game 
equation with the following initial and terminal boundary 
conditions: 

     
 

,

K
i

i i j
j D i

Q s p s p s




   ,  0,s T  , ,i K   (2) 

where an overdot denotes a derivative of a function with 
respect to time. 

Users access a wireless system through the air interface, 
which is a common resource; since the air interface is a shared 
medium, each user’s transmission is a source of interference 
for others [10]. The signal-to-interference ratio (SIR) is a 
measure of the quality of signal reception for a wireless user. 
Thus, there exists a minimum acceptable SIR for each user. 
Assuming the minimum transmission power of user i is 

 ip s , all users are assigned the same bandwidth W, and user i 
splits the ( [0,1])i im m   fraction of its bandwidth for relaying 
[1], as shown in Fig. 1. The additional rate cost Ri(s) by time s 
can then be expressed as 

          
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where ( ) ( ) max{0, },f z z b z b    if 0z b  and 

f(z)=0, and i is a nonnegative parameter. The interference 
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from neighboring relays is denoted by Ii(s) and can be 

expressed as      ,
1,

N

i i j j
j j i

I s h p s s
 

  .   

Constrained by limited resources, the decoding set D(i) is 
time varying. Let xi(s) denote the stock, that is, the power of 
user i by time s, which is the sum of the transmission power 
and relaying power, affected by decoding set D(i). The 
evolution of this stock is governed by the following differential 
equation: 

     i
i i ix s Q s g x s



  , ,i K   0,s T ,     (4) 

where gi is the time-varying parameter of D(i).  
All relay users have to decode the signals before forwarding 

them, and thus users have a storage cost for relaying, which is 
constructed based on the evolution of xi(s). Let Si(xi(s)) denote 
the storage cost, and we have the following formula [11]: 

      i i i i iS x s x s p s    , 0  ,       (5) 

where i  is a nonnegative parameter, which means the unit 
cost of energy consumed, and is interpreted as the number of 
information bits received per joule of energy consumed. 

As a game player, each user seeks to minimize its payments 
of discounted sum of the increasing transmission cost. Let  
Ci(pi(s)) denote the payments of the discounted sum of the 
increasing transmission cost and pi(s) be the control of the 
differential game. The optimization problem of user i can thus 
be expressed as 

 
         

0
min dt,

i

T i s
i i i i i

p s
C p s Q s R s S x s e 


 

   
 

  (6) 

where   is the common discount rate, which is applied to 
find the discount, subtracted from a future value to find the 
value before the game starts. The discount rate should be 
considered when deciding whether to spend resources on or 
give more resources for a transmission. 

We are then led to a differential game, 

    , ,i iG G p C  , in which the following hold: 
1) The players of G are users {1, 2, , }K   . 
2) The strategy of player i is pi(s), which denotes the 

allocated power, and the game’s strategy profile is 

1 2( ) ( ( ), ( ), , ( ))KP s p s p s p s  . 
3) The players’ utilities are the objective of the minimum 

problem in (6). 
Generally, the payments (utilities) of defined game G are not 

linear, which is different from the original normal game form.  

III. Non-cooperative Optimal Power Control 

In this section, we consider the model of a finite horizon, a 

series of dynamic optimization programs, and one feedback 
Nash equilibrium problem. The dynamic optimization program 
technique was developed by Bellman [12] and is given in 
Theorem 1. 

Theorem 1: Bellman’s dynamic programming. A set of 

controls, ( ) ( , ),u s s x   constitutes an optimal solution to 

control (6) if there exist continuously differentiable functions, 

V(s, x), defined 0[ , ] mt T R R  and satisfying the following 

Bellman equation, 

 

 
( , ) min [ , , ] ( , ) [ , , ]

            [ , , ( , )] ( , ) [ , , ( , )] ,

s xu

x

V s x g s x u V s x f s x u

g s x s x V s x f s x s x  

  

 
(7) 

   , .V T x q x                 (8) 

In this case, time is presented by s , the state is denoted by x, 

and  ,iV s x  is the utility function (cost) of player i  in time 

interval  0 ,t T . For the optimization problem of (6), value 

function  ,iV s x  can be represented as follows: 

          
0

, , , dt.
Ti i s

i iV s x Q s x s R s x s S x s e 


 
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 


 (9) 
Performing the indicated maximization for the optimization 

problem indicated above, we can obtain the Nash equilibrium 
for users, that is, 

     
 

21 log
( ) 1

, 1
i i

i i i s
i x

m e
p s s

V s x e







  
 

, 

i K  ,  0, .s T              (10) 

Proposition 1. System (7), (8) provides the solution. 

   , ( )i s
i iV s x A s x B s e     , i K       (11) 

with         1 2 3, , , , KA s A s A s A s  satisfies the 

following equations: 

    ig t Ti i
i

i i

A s e
g g

 


 
  

     
,      (12) 

 iA T  ,                (13) 

and         1 2 3, , , , KB s B s B s B s is given by 

    0

0
dt

ss t
i i iB s e f t e B      .      (14) 

The proof of Proposition 1 is given in the Appendix. In 

(14),  if t  is suppressed by  ,i  ,im and  ,i  which 

can be found in the Appendix.  
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Based on the above proposition, (6) can be solved through a 
non-cooperative differential game, as follows: 

Procedure. Optimal power pi(s) assigned to user i 
1) Choose objective user i, and start with a time interval, 

 0 ,t T , and initial parameters for optimal power control; 

2) Construct the minimum payments problem of user i; 
3) Calculate the Nash equilibrium of the optimization 

problem from equation (13). Control the power level of 
node i based on the Nash equilibrium. 

Proposition 2. The Nash equilibrium obtained from (13) 
varies with a change in parameter Ai(s) and has the same 
changing trend. 

The result in Proposition 2 is straightforward, based on 
Proposition 1. 

IV. Performance Evaluation 

As  iA s  has an obvious impact on the Nash equilibrium, 
we first consider the variation of  iA s  with time and   in 
this simulation, which is shown in Fig. 2. It is easy to find that 

 iA s  is proportional to the time vector. 
In Fig. 2(a),  iA s  increases with time and varies from 0 to  

 

 

Fig. 2. Variation of Ai(s) with (a) time and (b) discount rate. 
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Fig. 3. Variation of pi(s) with (a) time and (b) discount rate. 
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5. As can be seen from (10), Nash equilibrium ( )i s  is a 
function of  iA s , the variation of which will significantly 
reflect on ( )i s , which means the optimal power assigned to 
each user will be modified by  iA s . On the other hand, 

 iA s  is the coefficient of x  in (11). The system solution 

 ,iV t x  in (11) will also be influenced by  iA s . It can be 
seen from Fig. 2(b) that  iA s  is inversely proportional to 
discount rate . 

We can easy find the optimal power assigned to users 
through the differential power control game algorithm, which 
is shown in Fig. 3(a). It can be seen from Fig. 3(a) that the 
Nash equilibrium obtained has the same variation trend 
as  iA s , which is consistent with Proposition 2. Furthermore, 
we can find that the optimal power is proportional to the 
discount rate (shown in Fig. 3(b)), which means we can 
assign more power for a transmission with a higher discount 
rate. 

V. Conclusion 

In this paper, a non-cooperative differential-game based 
power-control approach for a cooperative relay network was 
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proposed, which is distributed in each node and acts 
independently to achieve coordinate power control of the 
network resources. It was proved that a differential game can be 
used in cooperative relay networks for power control problems. 
Minimum payments of each node can be achieved, and the 
optimal power level assigned to relay nodes can be obtained. 

Appendix 

Proof of Proposition 1. 

Assume that  ,iV s x  is a polynomial that can be 

expressed as follows: 

   , ( ) .i s
i iV s x A s x B s e             (15) 

Using (15), system (7), (8) can be expressed as 

       

          ,

i i i i

i i
i i i i i

A s A s x B s B s

Q s R s x p A s Q s g x

 


 

          
 

     
 

  (16) 

    ( ) .i i i iA T x B T x T x


          (17) 

We then have 

      ,i i i iA s g A s               (18) 

  ,iA T                  (19) 

          1 ,i
i i i i i iB s B s A s Q s R s p 



        (20) 

and 

( ) .i iB T x                 (21) 

Plugging equations into (20), we have 

      
 

 
 

 
 

     
 

  
 

   
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i i i i
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A s

P s m W
A s

p s mW P s
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
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
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






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
   


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
(22) 

where i  and i , for i K  , are constraints involving 

the model parameters,  1 2 3, , , , ,K     

 1 2 3, , , , Km m m m ,  1 2 3, , , , K    , and  
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

 (23) 

Solving (18) and (19), we have 

     .ig t Ti i
i

i i

A s e
g g

 


 
  

     
      (24) 

 iB s  can be solved as 

    0

0
dt

ss t
i i iB s e f t e B              (25) 

with 

 0

0
dt.

T t
ii iB x F t e                 (26) 

Hence, Proposition 1 follows. � 
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