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This paper presents a novel 90 GHz band          
16-quadrature amplitude modulation (16-QAM) 
orthogonal frequency-division multiplexing (OFDM) 
communication system. The system can deliver 6 Gbps 
through six channels with a bandwidth of 3 GHz. Each 
channel occupies 500 MHz and delivers 1 Gbps using  
16-QAM OFDM. To implement the system, a low-noise 
amplifier and an RF up/down conversion fourth-
harmonically pumped mixer are implemented using a  
0.1-μm gallium arsenide pseudomorphic high-electron-
mobility transistor process. A polarization-division duplex 
architecture is used for full-duplex communication. In a 
digital modem, OFDM with 256-point fast Fourier 
transform and (255, 239) Reed-Solomon forward error 
correction codecs are used. The modem can compensate 
for a carrier-frequency offset of up to 50 ppm and a 
symbol rate offset of up to 1 ppm. Experiment results 
show that the system can achieve a bit error rate of 10–5 at 
a signal-to-noise ratio of about 19.8 dB. 
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I. Introduction 

As high-speed wireless data services, such as 3G/4G mobile 
communications, IEEE 802.11ac/ad wireless LAN, and wired 
Gigabit Ethernet, are becoming more widespread, multi-gigabit 
Ethernet networks are needed. Compared to wired multi-
gigabit Ethernet networks, wireless multi-gigabit Ethernet 
networks have the advantage of an easy installation and low 
construction cost. Many countries are considering allocating 
the 70 GHz to 90 GHz millimeter wave band for multi-Gbps 
wireless communications. Many countries have standardized 
the 71 GHz to 76 GHz and 81 GHz to 86 GHz bands for multi-
Gbps wireless communications, including the Republic of 
Korea, the United States, and the territories of Europe [1]. The 
United States and Canada recently allocated the 90 GHz band 
and specified the technical criteria of the   90 GHz band for 
fixed point-to-point wireless communications. Recent studies 
presented systems and technologies for 40 GHz, 60 GHz and 
70 GHz to 90 GHz band wireless communications [2]-[11]. In 
previous works, the frequency-division duplex (FDD) scheme 
[2], [7]-[9] or time-division duplex (TDD) scheme [3]-[4], [9] 
was used for full-duplex communication. However, the 
spectral efficiency of full-duplex communication, that is, 
bidirectional throughput per Hz, is equal to a spectral efficiency 
of either direction. 

This paper presents a 16-quadrature amplitude modulation 
(16-QAM) orthogonal frequency-division multiplexing 
(OFDM)-based highly spectral-efficient six-channel 90 GHz 
band wireless point-to-point broadband communication system. 
This system can achieve a bit rate of up to 6 Gbps using a 

16-QAM OFDM-Based W-Band Polarization-
Division Duplex Communication System 

with Multi-gigabit Performance 

Kwang Seon Kim, Bong-Su Kim, Min-Soo Kang, Woo-Jin Byun, and Hyung Chul Park  



ETRI Journal, Volume 36, Number 2, April 2014 Kwang Seon Kim et al.   207 
http://dx.doi.org/10.4218/etrij.14.2113.0083 

bandwidth of 3 GHz. In our previous work, we presented a 
single carrier 16-QAM based E-band (71 GHz to 76 GHz and 
81 GHz to 86 GHz) wireless point-to-point broadband 
communication system [7]. In the previous system, the FDD 
scheme was used because the spectrum is divided into a lower 
band (71 GHz to 76 GHz) and an upper band (81 GHz to   
86 GHz). However, since a bandwidth of 3 GHz (92 GHz to 
95 GHz) is allocated in the 90 GHz band, the proposed system 
herein utilizes a polarization-division duplex (PDD) 
architecture to achieve both full-duplex communication and a 
multi-Gbps data rate. By using a PDD scheme, the spectral 
efficiency of full-duplex communication can be increased by 
two times compared to that of the FDD- or TDD-scheme-
based existing millimeter wave wireless communication. In 
addition, an OFDM technique and equalizer are used to reduce 
the effects of inter-symbol interference caused by multipath 
propagation. 

II. System Architecture and Function Blocks 

Figure 1 and Table 1 show a block diagram and the 
specifications of the proposed system, respectively. The 
proposed system uses a PDD architecture for full-duplex 
communications. For the PDD, each transmitter and receiver 
uses an antenna with different polarizations [12]. The 
transmitter consists of six digital modulators, six quadrature 
digital-to-analog converters (DACs), six IF up-converters, and 
one RF up-converter. Each digital modulator generates     
16-QAM OFDM signals with a 256-point fast Fourier 
transform (FFT) and an oversampling ratio of 2. The resolution 
and sampling rate of the DAC are 12 bits and 781.25 MS/s, 
 

Table 1. Specifications of proposed system. 

Parameter Specification 

Frequency band 92 GHz - 95 GHz 

Data rate 6 Gbps 

Number of channels 6 

Channel spacing 500 MHz 

FFT size 256 

Subcarrier frequency spacing 1.83 MHz 

Modulation 16-QAM 

Max. transmit power 10 dBm 

Gain (RF transmitter) 16 dB - 21 dB 

Gain (RF receiver) 5 dB - 10 dB 

Output P1 dB (RF transmitter) 10.5 dB 

Noise figure (RF receiver) < 10 dB 

 

 
respectively. Six IF up-converters upconvert the six modulated 
signals to the 4 GHz to 7 GHz IF band with a channel spacing 
of 500 MHz. The RF up-converter upconverts the IF signal and 
transmits the up-converted signal in the 90 GHz band. The 
maximum transmission power is 10 dBm. The receiver 
consists of one RF down-converter, six IF down-converters, six 
quadrature analog-to-digital converters (ADCs), and six digital 
demodulators. The RF down-converter down-converts the RF 
signal to the 4 GHz to 7 GHz IF band. Each IF down-converter 
down-converts each channel signal to the baseband. The 
resolution of the ADC is 12 bits, and the sampling rate of the 
ADC is identical to that of the DAC. Each digital demodulator 
 

 

 

     
     

 

 

   

  
  

  

 

 

 

 

Fig. 1. Block diagram of proposed system. 
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Fig. 2. Block diagram of RF/IF transceiver. 

I input 

Q input 

100 MHz REF 

I output 

Q output 

I/Q mixer 

IF_LO 

VGA I/Q mixer 

Ch. combiner 

Attenuator 

1/4 harmonic 
mixer 

RF_LO

DA BPF 

Tx antenna

Rx antennaLNA BPF LNA 

1/4 harmonic 
mixer 

Ch. divider

Ch. BPF

 

Fig. 3. (a) Chip microphotograph, (b) schematic, and (c) 
measured results of LNA. 
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produces 1 Gbps of binary data. 
Figure 2 shows a detailed block diagram of the RF/IF 

transceiver. In the IF transmitter, the digital-to-analog converted 
signal is low-pass filtered by a seventh-order Butterworth filter 
with a cutoff frequency of 288 MHz. A passive type I/Q mixer 
is used for the up conversion, with a conversion loss of 7 dB.  

Six IF channel signals are combined for RF transmission. 
For the RF up conversion, a fourth-harmonically pumped 
(FHP) mixer and a driver amplifier (DA) are used. The 
developed system employs a Cassegrain-type antenna with  
50 dBi gain. A low-noise amplifier (LNA) and FHP mixer are 
used in the receiver. In addition, the transmitter and receiver RF 
mixer are identical. The down-converted signal is divided into 
six IF signals by a power divider. The channel band-pass filter 
(BPF) is used to reduce inter-channel interference due to multi-
channel signals. The insertion loss of the BPF is less than 2 dB. 
After channel band-pass filtering and I/Q mixing, an automatic 
gain control (AGC) is used to maximize the ADC dynamic 
range while avoiding clipping. The dynamic range of the AGC 
is 30 dB. The LNA and FHP mixer are designed and fabricated 
using a 0.1 μm gallium arsenide pseudomorphic high-electron-
mobility transistor (GaAs pHEMT) process with a 50-μm 
wafer thickness, a cutoff frequency of fT ≈ 120 GHz, and a 
maximum oscillation frequency of fmax > 200 GHz. The LNA 
uses a combination structure to achieve both a low noise figure 
and good output matching [13]. In addition, the FHP mixer is 
designed to lower the local oscillator (LO) frequency and 
reduce the power consumption [14]. Figures 3 and 4 show chip 
microphotographs, schematics, and measurement results of the 
LNA and FHP mixer, respectively. The chip size of the LNA 
and FHP mixer are 3.6 mm × 2.1 mm and 1.1 mm × 1.0 mm, 
respectively. Table 2 summarizes the measurement results of 
the LNA and FHP mixer. 

Figure 5 presents a block diagram of the digital modem. A 
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Table 2. Measurement results of LNA and FHP mixer. 

Parameter Measurement result 

LNA 

Gain > 18 dB 

Noise figure < 5 dB 

Power dissipation 54 mA @ 2 V 

FHP 
mixer 

Conversion loss 
16 dB @ up conversion 

17 dB @ down conversion
Input P1 dB –2 dBm 

LO frequency 20 GHz - 23 GHz 
 

 

digital modem is implemented in a XC5VSX240T field-
programmable gate array. Each data packet is composed of a 
preamble and physical layer (PHY) payload. The preamble 
consists of three signal sections. The first of these sections 
consists of 96 subcarriers in an OFDM symbol, in which each 
subcarrier is modulated using quadrature phase-shift keying 
(QPSK) and is used for signal detection and AGC. The second 
consists of 24 QPSK modulated subcarriers in an OFDM 
symbol and is used for coarse frequency offset estimation. In 
addition, the third consists of 96 QPSK modulated subcarriers 
and is used for fine frequency offset estimation and channel 
estimation. The PHY payload is modulated using 16-QAM. 
 

 

Fig. 4. (a) Chip microphotograph, (b) schematic, (c) measured up-conversion results, and (d) measured down-conversion results of FHP
mixer. 
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Fig. 5. Block diagram of digital modem. 
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To reduce the operating frequency of each processing element, 
parallel processing with multiple function units is used in the 
modem. In each modulator, four (255, 239) Reed-Solomon 
(RS) forward error correction (FEC) encoders load 32-bit data 
simultaneously [6], [15]-[17]. Hence, when the input data rate 
is equal to 1 Gbps, the output symbol rate in each RS encoder 
becomes 33.34 Msymbols/sec. Four parallel RS encoded 
symbols are mapped into eight parallel 4-bit streams by eight 
16-QAM mappers. 16-QAM encoded data is fed to a 256-
point inverse FFT (IFFT) block. The IFFT output is 
interpolated by a factor of two using eight digital interpolation 
filters. Sixteen parallel interpolated samples are converted into 
four parallel samples using 4:1 multiplexing to utilize the 4:1 
multiplexer in the DAC. 

In each demodulator, utilizing the 1:2 demultiplexer in the 
ADC, the two parallel input sample streams are converted into 
sixteen parallel samples with 1:8 demultiplexing. These 
samples are decimated by a factor of two. The cross-correlation 
of the first section of the preamble is used for a digital AGC. 
Frequency offset compensation is accomplished with the auto- 
 

correlation scheme in two steps [18]-[20]. The first step is coarse 
frequency offset compensation with the second section of the 
preamble. Through the coarse frequency offset compensation, 
the residual frequency offset can be reduced to 480 kHz or less 
from up to 4.5 MHz, that is, 50 ppm. The second step is fine 
frequency offset compensation with the third section of the 
preamble. Through the fine frequency offset compensation, the 
residual frequency offset can be reduced to 80 kHz or less. The 
residual carrier phase error and symbol timing error are estimated 
and compensated for by observing the phase rotation of the 
OFDM subcarriers [21]. In addition, single-tap frequency 
domain equalization is employed. A least squares algorithm is 
used to estimate the channel impulse response [22]. 

III. Experiment Results 

Figure 6 shows photographs of the developed system. In 
Fig. 6(a), the small black box at the top is the RF transceiver 
and the black box at the bottom is the six-channel IF 
transceiver and digital modem. The demonstration system 
 

 

Fig. 6. Photographs of developed system: (a) system setup for demonstration, (b) digital baseband module, (c) IF transceiver module,
and (d) IF LO module. 
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Fig. 7. Measured antenna isolation for PDD: (a) test setup and (b) 
measured results. 
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Fig. 8. Measured BER performance. 
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provides a data rate of 3 Gbps using three channels and uses a 
Cassegrain-type antenna with a 12.5 cm microstrip reflectarray 
for an indoor test [23]. The distance between the transmitting 
and receiving antennas is equal to 4 cm. Figure 7 shows the 
measurement results of the isolation between the 
transmittingand receiving antennas. We find that when the 
distance between the transmitting and receiving antennas is 
equal to 4 cm, the isolation requirement of 80 dB is satisfied. 
Figure 8 shows the measured bit error rate (BER) 
performance.1) The system produces a BER of 10–5 at a signal-
                                                               

1) To measure the BER performance, the transmitter, receiver, and AWGN signal generator 
are connected using a cable and an adjustable attenuator is used to sweep the receiver input 
power. 

to-noise ratio (SNR) of about 19.8 dB with an RS-FEC code. 
Uncoded 16-QAM OFDM suffers further performance 
degradation as compared to the theoretical 16-QAM 
performance in an additive white Gaussian noise (AWGN) 
channel. This degradation is caused by implementation loss in 
the digital modem (about 1 dB) and implementation loss in the 
90 GHz band millimeter wave module. 

IV. Conclusion 

In this paper, a six-channel 90 GHz band wireless point-to-
point broadband communication system with a data rate of   
6 Gbps was presented. The system uses 16-QAM OFDM to 
improve the spectral efficiency and an RS-FEC code to 
improve the performance. An LNA and an FHP mixer were 
fabricated, resulting in a noise figure of less than 5 dB and a 
conversion loss of 16 dB to 17 dB, respectively. The hardware 
measurement results showed a BER of 10–5 at an SNR of about 
19.8 dB. If two-foot Tx/Rx antennas are used, the available 
communication range can be more than 1 km at a rain rate of 
42 mm/hr. The developed system is applicable for high-speed 
wireless networks and wireless home networks as well as 
wireless backhaul networks. 
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