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Semantic role labeling (SRL) is a task in natural- 

language processing with the aim of detecting predicates 

in the text, choosing their correct senses, identifying their 

associated arguments, and predicting the semantic roles of 

the arguments. Developing a high-performance SRL 

system for a domain requires manually annotated training 

data of large size in the same domain. However, such SRL 

training data of sufficient size is available only for a few 

domains. Constructing SRL training data for a new 

domain is very expensive. Therefore, domain adaptation 

in SRL can be regarded as an important problem. In this 

paper, we show that domain adaptation for SRL systems 

can achieve state-of-the-art performance when based on 

structural learning and exploiting a prior model approach. 

We provide experimental results with three different 

target domains showing that our method is effective even 

if training data of small size is available for the target 

domains. According to experimentations, our proposed 

method outperforms those of other research works by 

about 2% to 5% in F-score. 

 

Keywords: Domain adaptation, semantic role labeling, 

natural language, semantic analysis, structured learning, 

prior model. 
                                                               

Manuscript received July 1, 2013; revised Oct. 30, 2013; accepted Nov. 5, 2013.  

This work was supported by the IT R&D program of MSIP/KEIT (10044577, Development 

of Knowledge Evolutionary WiseQA Platform Technology for Human Knowledge 

Augmented Services). 

Soojong Lim (phone: +82 42 860 1297, isj@etri.re.kr), Pum-Mo Ryu (pmryu@etri.re.kr), 

Hyunki Kim (hkk@etri.re.kr), and Sang Kyu Park (parksk@etri.re.kr) are with the 

SW·Content Research Laboratory, ETRI, Daejeon, Rep. of Korea. 

Changki Lee (leeck@kangwon.ac.kr) is with the Department of Computer Science, 

Kangwon National University, Chuncheon, Rep. of Korea. 

Dongyul Ra (corresponding author, dyra2246@gmail.com) is with the Division of 

Computer &Telecommunication Engineering, Yonsei University, Wonju, Rep. of Korea. 

I. Introduction 

Big data explosion has led to an exponential growth in the 

amount of valuable textual data in many fields. Thus, 

automatic information retrieval (IR) and information extraction 

(IE) methods have become more important in helping 

researchers and analysts to keep track of the latest 

developments in their fields. Current IR is still mostly limited 

to keyword search and unable to infer relationships between 

entities in a text. A system that is able to understand how words 

in a sentence are related semantically can greatly improve the 

quality of IE and would allow IR to handle more complex user 

queries.  

Semantic role labeling (SRL) is a task for semantic 

processing of natural-language text, wherein the semantic role 

labels of the arguments associated with the predicates in a 

sentence are predicted. Recently, SRL has become increasingly 

popular as natural-language processing technology advances. 

The purpose of SRL is to find “who does what to whom, when, 

and where” in natural-language text by recognizing the 

semantic roles of the arguments of the predicates.  

As a result of performing SRL on a given sentence and its 

predicate, each word in the sentence is assigned a semantic role 

label. By combining the labels for the words, the output of SRL 

can be viewed as a sequence of semantic role labels. The 

sequence is generated for each predicate. For example, as in 

Fig. 1, the semantic role A0 represents the “agent” of “wants” 

and the semantic role A1 denotes the thing “being wanted.” 

The information produced as a result of an SRL task is 

valuable for IE and other natural-language understanding tasks 

such as question answering [1] and online advertising services 

[2]. 

In previous research, most works on SRL focused on  
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documents from the newswire domain. While SRL systems 

perform well on sentences from the domain of the training data 

used to develop the system (source domain), such systems 

show a sharp performance drop when they are tested on 

domains other than the source domain—namely, target 

domains [3]–[6]. For example, all systems of CoNLL-2005 

shared task [3] on SRL show a performance degradation of 

almost 10% or more when tested on a target domain. Although 

in recent years, there have been a number of efforts to apply 

existing SRL systems to various domains other than the source 

domain, development of state-of-the-art SRL systems for target 

domains is inhibited by a lack of large training data that comes 

annotated with semantic role labels. Constructing training data 

for a new domain is time consuming and expensive. 

The task of domain adaptation is to adapt an SRL system— 

based upon training data from a source domain—to another 

target domain without experiencing significant performance 

drop. The domain adaptation problem is important in natural-

language understanding, because there exists sufficient 

annotated data only for a few domains and it is very expensive 

to construct annotated data for new domains. With improved 

domain-adaptation techniques, high-performance systems can 

be built for a new domain for which only a small amount of 

annotated data is available. 

In this paper, we introduce a domain-adaptation technique 

for developing a multi-domain SRL system. In building our 

system, SRL is carried out based on a structural learning model, 

actually a structural SVM, because it has been shown that the 

model is instrumental in building an SRL system with state-of-

the-art performance [7]. Out of several domain-adaptation 

methodologies, we choose an approach originally introduced in 

[8]. This approach was referred to as the “prior model” in [9]. 

Based upon these two major strategies for system design, we 

devise a training procedure for the structural SVM in charge of 

SRL for target-domain texts so that the procedure can facilitate 

domain adaptation.  

We demonstrate that our domain-adaptation technique can 

be applied to adapt an SRL system developed for the newswire 

domain (where a large annotated corpus is available) to several 

other target domains (for which only a small amount of 

annotated data is available). In this way, we can leverage 

existing annotated data in the newswire domain (source 

domain) and significantly reduce the cost of developing SRL 

systems for various target domains. We choose the domains 

“general fiction” and “biomedical” as target domains in 

English. In addition, we also select a “legislation” domain in 

German as an additional target domain. The main contributions 

of this paper are as follows: 

For the first time, we show that exploiting a structural 

learning model for an SRL domain-adaptation task can enable 

one to build a multi-domain SRL system that is state-of-the-art. 

We discover that combining a prior model approach with a 

structural learning model leads to an effective domain-

adaptation technique for SRL. 

We demonstrate experimentally that our method is effective 

in domain adaption even though usage (sense) of a predicate in 

a target domain is different from that in a source domain. 

Ours is the first work that provides a comparative 

evaluation of three recently proposed domain-adaptation 

frameworks for the task of SRL using three target domains. 

The experiments on three different target domains reveal that 

our proposed method outperforms other domain-adaptation 

strategies in developing a multi-domain SRL system.  

The organization of this paper is as follows. Related research is 

discussed in section II. Section III explains structural learning 

for SRL. Section IV describes our domain-adaptation method. 

Experimental results are given in section V. Section VI 

concludes the paper. 

II. Related Research 

Over the years, many domain-adaptation frameworks have 

been proposed. Some of them focused on how to use a small 

amount of labeled data from a target domain in conjunction 

with a large amount of labeled data from a source domain [8]–

[12]. Other works on domain adaption (DA) focused on 

adapting their models from the perspective of learning, based 

on the labeled data sets of the source and target domains [13], 

[14].  

Daumé and Marcu [15] categorized and evaluated many of 

these DA approaches, which include the following: source-

only (SRC-only) baseline method, whereby the target-

domain data is ignored and training is done using only the 

source-domain data. In target-only (TGT-only) baseline 

method, training is done on only the target-domain data and 

source-domain data is never used. The source-and-target 
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method uses the combined data from both domains for 

training. In the PRED baseline method, a SRC-only model is 

first built based on the source-domain data and then run on 

the target-domain data. The output from the SRC-only model 

is added as additional features to the features from the target-

domain data. Finally, the system is built by using the 

increased feature data for training. In the linearly-

interpolation (LIN-INT) baseline method, the SRC-only and 

TGT-only models are independently run, and their outputs are 

linearly interpolated to come up with the final output. 

In addition to the above domain-adaptation methods, Daumé 

[10] introduced a feature augmentation (FA) method in which 

the feature space is augmented to achieve domain adaptation. 

The idea, proposed in [8], is to utilize the source-domain data 

to obtain a Gaussian distribution for parameters of maximum 

entropy models, which is then used as a prior in estimating the 

model parameters during adaptation using target-domain data. 

The final target model being trained “prefers” the prior weights 

unless the target data forces the model to take different weights. 

Lee and Jang [9] used the basic idea of Chelba and Acero to 

obtain the target structural SVM influenced by the SVM 

constructed for the source domain. Lee and Jang referred to this 

approach as the prior model. Note that prior is not used (in 

their case of adapting SVMs) in the statistical sense as in prior 

probabilities. 

A structural SVM was found to be suitable for SRL [7]. In 

this paper, we adopt the prior-model approach to facilitate 

domain adaptation in developing a structural SVM–based SRL 

system. Our work is different from that of Chelba and Acero 

[8] in that we used the prior-model approach for a structural 

learning model of SVM; whereas they used it for a maximum-

entropy Markov model. Our work is similar to Lee and Jang 

[9] in that both works use the prior-model approach for 

adapting structural SVMs. However, Lee and Jang have tried 

to apply the idea of the prior model in adapting the 1-slack 

cutting plane algorithm of 1-slack structural SVM [16]. In 

contrast, we use the prior-model approach in adapting the 

stochastic gradient descent (SGD)-based structural SVM for 

SRL. 

III. Structural Learning Model for SRL 

To present our domain-adaptation method for SRL, it is 

necessary to describe the basic model used to perform SRL in 

our system, especially from the point of view of machine 

learning. In our SRL model we adopt a structural SVM, which 

was developed to build an SRL system and found to be 

effective for performing SRL [7]. In this section, we provide 

explanation for theoretical aspects of the structural SVM 

described in that work for completeness and readability of this 

paper.  

1. The Pegasos Framework for Building an SVM 

To build a machine-learning model for binary classification, 

it can be assumed that we are given training data  

1{ , }m
i i iS y  x , where xi is a feature vector and yi is an output 

label taking either +1 or –1. A classical SVM for binary 

classification is a machine-learning model to solve the 

following constrained optimization problem [17]: 
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under the constraints that ( ) 1T
i i iy b   w x for all i, 

1 i m  . The slack variable iξ  for each i, 1  i  m, is 

introduced to implement an idea of soft margin. If there exists 

no hyperplane that can split all “yes” and “no” examples, a 

hyperplane will be chosen that splits the examples as cleanly as 

possible while allowing some misclassified examples. 

The Pegasos framework is a methodology for developing a 

learning model for binary classification given training data like 

S above. However, unlike classical SVMs, it makes use of 

SGD schemes [18]. These schemes aim at fast computation for 

optimization problems. The Pegasos algorithm showed a 

competitive performance among the SGD methods.  

The Pegasos algorithm takes the approach of finding a 

parameter, vector w, that minimizes the following 

unconstrained objective function: 
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where the loss function ( ;( , )) max {0,1 }.T
i i i il y y w x w x  

The parameter λ  is for regularization. The subset At of S is 

prepared by selecting its members randomly from S. Its 

cardinality |At| is denoted by k. If the subgradient of the 

approximate objective is taken, it is 
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In (3), {( , ) : 1}.T
t tA y A y   x w x Following the 

principle of gradient update, w is set to a new value 

ˆ ( )c f  w w w . The variable c represents a preset learning 

rate.  

2. Structural SVM 

Because our SRL component needs to carry out sequence 

labeling to find the semantic role labels of the words in a 

sentence, a model for binary classification is not enough. We 

need a model with a structural output such as a label sequence.  
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Tsochantaridis and others [19] introduced structural SVMs 

that can produce structural outputs such as trees or sequences. 

In this structural learning problem, the output label yi in training 

examples of binary classification should be switched to yi,  

taking a structural value such as a label sequence. In their 

framework, a discriminant function F: X Y  ℝ is 

exploited, where X is the input space, Y the output space, and ℝ 

the set of all real numbers. The discrimmant function F is 

formed as the inner product of the vectors w and Ψ( , )x y as 

follows: 

( , ; ) Ψ ( , ),TF x y w w x y            (4) 

where w is a parameter vector and Ψ( , )x y is a feature vector 

that represents the input/output pair (x, y).  

For a given input x, F is used to generate a prediction 

(output) by choosing ŷ  as an output in such a way that F is 

maximum at (x, ŷ ) among all possible y. 

 ˆ argmax ( , ; ).F



y

y x y w
Y

              (5) 

The problem of learning the structural SVM is to find a 

parameter vector w that is optimal according to the given 

training data S={(xi, yi): i = 1, 2,…, m}. Following the margin-

rescaling paradigm, the structural SVM model [18] is 

formulated as a constrained optimization problem as follows: 

2
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[1, ], \ : Ψ ( , ) ( , ) .T
i i i i ii m δ L ξ     y y w x y y yY  (6)  

In (6), it is defined that Ψ ( , )i i iδ x y  Ψ( , ) Ψ( , ).i i ix y x y  

Hamming loss function L(yi, y) is the count of the element 

positions of the input vectors at which the corresponding 

elements of y and yi are not the same. The symbol C indicates 

the regularization constant. Removing an element from a set is 

what is meant by the symbol “\” in \ iyY .  

3. Structural SVM for SRL 

In a similar way that the Pegasos framework was used to 

build an efficient learning model of (2) for binary classification 

problems originally given as (1), the Pegasos algorithm was 

applied to the structural learning problem of (6) to obtain an 

efficient structural learning model, which is actually a structural 

SVM for SRL. In this subsection, we provide a brief 

description on how this was done in [7]. 

In a core component of an SRL system, the input consists of 

both a sentence and a predicate, and the output is a label 

sequence. Therefore, training data D for an SRL can be 

represented as follows:  

{( , , ) : 1,2, ... ,i ij ijD i m x pr y  

and 1, ... , for each }.ij m i          (7) 

Note that a predicate pr needs to be added as input to the 

discriminant and feature functions F and   as in 

( , , ; )F x pr y w  and Ψ( , , ).x pr y  

Following the Pegasos framework, the unconstrained 

objective function for the structural SVM can be chosen as 

follows: 

( , , )

12
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The model needs to find an optimal vector w that minimizes 

f without any constraints. We choose At, of size k, randomly 

from D. The loss function l is defined to be 

( ;( , , )) max{0,max{ ( , ) Ψ ( , , )}},T
i ij ij ij ij i ijl L δ w x pr y y y w x pr y

where .Ψ ( , , ) Ψ( , , ) Ψ( , , )ij i ij i ij ij i ijδ  x pr y x pr y x pr y As 

explained previously, ( , )ijL y y is the Hamming loss function. 

If we take the subgradient of ( ; )tf Aw , we obtain 
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{( , , ) : ( ;( , , )) 0}.t tA A l   x pr y w x pr y  

Let wt be the parameter vector at any point during training. 

Then, the updated parameter wt+1 is obtained by setting it to  

wt  ( ; )t t tη f A w , where 1/ ( )tη λt  is the learning rate. 

Using (9), we obtain 

*
1

( , , )

(1 ) Ψ ( , , ).

i ij ij t

t
t t t ij i ij ij

A

η
η λ δ

k 



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x pr y

w w x pr y  (10) 

IV. Developing a Multi-domain SRL System 

In this section, we explain how a multi-domain SRL system 

can be constructed based on the structural SVM introduced in 

the previous section. In particular, we describe how the 

structural SVM for the source domain is adapted to 

accommodate the prior model to be effective for domain 

adaptation.  

1. Basic SRL System for Source Domain 

In developing a multi-domain SRL system, we first build an 

SRL component for the source domain, which is our basis 

subsystem. The structural SVM for SRL explained in section 

III, subsection 3, is used to build our basic source-domain SRL 

component. For training the structural SVM, we follow the 
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method that was introduced in [7].  

It is assumed that the training data Dsrc for the source domain 

is available. Specifically we used the procedure shown in 

Algorithm 1 for building the source-domain SRL component. 

This training procedure is based on the weight-parameter 

update scheme given in (10).  

2. Domain Adaptation with Structural SVM 

In the scenario of domain adaptation, the model built on the 

source-domain data undergoes a domain-adaptation process by 

utilizing the target-domain data. The performance of the multi-

domain SRL system will decrease dramatically if the model 

trained on the source domain is applied directly to the target 

domain without domain adaptation.  

As our domain-adaptation scheme, we take the approach 

referred to as the prior model by Lee and Jang [9] and 

originally proposed by Chelba and Acero [8]. The basic 

intuition behind the training process following the prior model 

is that it keeps the target-domain model as close to the source-

domain model as possible; unless there is strong evidence in 

the target-domain data to move the newly trained model away 

from the source-domain model.  

Algorithm 1. A training method for source domain 

Inputs: , , ,srcD λ T k  

1: w1= 0 // Initialization. 

2: For t = 1, 2, … , T do 

3:   Select ,t srcA D  where tA k  

4:  {( , , )t tA A  x pr y : ( ;( , , )) 0tl w x pr y }. 

5:  ( , , )i ij ij tA x pr y : 

* argmax{ ( , ) Ψ( , , )}T
ij ij t i ijL y y y w x pr y  

6:  tη =1 λt  

7:  1/2tw = (1 )t tη λ w  

*
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t
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η
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min 1,t t
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  
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w w
w

 

9: Return 1Tw as output 

Following the prior model, our multi-domain SRL system is 

constructed by utilizing a domain-adaptation method that 

consists of two training stages, as depicted in Fig. 2. The 

source-domain model constructed with a structural SVM is 

built by performing training with source-domain training data 

Dsrc. The basic SRL system introduced in the previous 

subsection is the system constituting this stage. As a result, 

weight vector wsrc is obtained, which represents the source 

(domain) model. 

 

Fig. 2. Domain adaptation with two-stage training. 
Fig. 4. PI and EPI behavior with respect to layers (Type 3). 
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Algorithm 1 Algorithm 2 
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Wtgt 

 

 

In the second stage, the target model is acquired by carrying 

out the training of the structural SVM using the target-domain 

training data Dtgt. Our multi-domain SRL system can be easily 

ported from one target domain to another by choosing a target 

domain and feeding its data as Dtgt in this second stage. 

Another input to stage two is the source-model weight vector 

wsrc resulting from the first stage, which is to realize the idea of 

the prior model. The training procedure for stage two needs to 

be developed so that a domain-adaptation effect can be 

achieved by the resulting target model.  

To accommodate the prior model, we use an objective 

function, which is obtained by modifying (8) as follows: 

( , , )

12
( ; ) ( ; ( , , ))

2
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i ij ij t

t src i ij ij
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λ
f A l

k 
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w w w w x pr y (11) 

This formula is based upon the idea that the closer the new 

model w is to the source model wsrc, the better it is; while it also 

manages to minimize the second term of (11) in parallel, which 

corresponds to the attempt of satisfying the constraints of the 

original optimization problem. The subgradient of ( ; )tf Aw is 

*

( , , )

1
( ; ) ( ) Ψ ( , , ).

i ij ij t

t src ij i ij ij
t A

f A λ δ
A 
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w w w x pr y

 (12)                                 

As explained before, wt is updated to wt+1 by t w  

( ; ),t t tη f A w  where the learning rate tη  is 1/( λt ). By 

using (12), the update formula becomes 

*
1

( , , )

( ) Ψ ( , , ).

i ij ij t

t
t t t t src ij i ij ij

A

η
η λ δ

k 




    
x pr y

w w w w x pr y

 (13) 

The training procedure using the target-domain data based 

upon (13)—which reflects our domain-adaptation strategy—is 

given in Algorithm 2.  

Algorithm 2 receives five inputs: Dtgt (training data for target 

domain), λ (regularization constant), T (the preset number of 
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iterations), k (the number of examples for calculating the 

subgradients), and wsrc (the weight vector trained on the source-

domain data). On each iteration t, the algorithm randomly 

chooses the set At, of cardinality k, from the training data Dtgt 

(line 3) and determines tA  consisting of training examples 

with positive loss (line 4). Then it computes the label sequence 
*
ijy  with “largest violation” for every ( ix , ijpr , ijy ) in tA  

(line 5). Updating wt to wt+1 according to (13) is done at line 7. 

 

Algorithm 2. A S-SVM.Prior algorithm for SRL 

Inputs: , , , ,tgt srcD λ T k w  

1: w1= 0 // Initialization. 

2: For t = 1, 2, … , T do 

3:  Choose ,t tgtA D  where tA k  

4:  Set {( , , )t tA A  x pr y : ( ;( , , )) 0tl w x pr y } 

5:  ( , , )i ij ij tA x pr y : 

* argmax{ ( , ) Ψ( , , )}T
ij ij t i ijL y y y w x pr y  

6:   tη =1 λt  

7:  1/2 ( )t t t t srcη λ   w w w w  

*
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9: Return 1Tw  as output 

V. Experiments on Performance 

1. Data Sets 

For SRL experiments, we choose the newswire domain (the 

Wall Street Journal corpus from CoNLL-2008 Shared Task) as 

the source domain. The first target domain in our experiment is 

the biomedical domain (BioProp). In addition, we also choose 

the general fiction domain (Brown corpus from CoNLL-2008 

Shared Task) as another target domain. 

In SRL data, predicates are given for each sentence, and the 

system has to predict semantic roles for each predicate. In the 

training data of the Wall Street Journal (WSJ) and Brown 

corpora, semantic role annotation is available for all verbs and 

nouns. In the case of BioProp, the creators of annotated 

BioProp concentrated on 30 important or frequent verbs from 

the biomedical domain. 

BioProp was created from 500 MEDLINE article abstracts. 

The articles were selected based on the keywords: human, 

blood cells, and transcription factor. To our knowledge, 

BioProp is the only resource for biomedical SRL that uses full 

syntactic parse trees. The dependency parse trees are available 

Table 1. Datasets of source and target domains in English. 

 
Source data Target data 

Newswire General fiction Biomedical 

Sentences 36,090 404 1,635 

Unique predicates 8,408 702 30 

Training examples 182,303 1,280 1,982 

Overlapped predicates 

with source predicates 
- 617 26 

 

 

from the GENIA Treebank [20] using constituent-to-

dependency conversion [5]. 

The statistics of the data sets are given in Table 1. It is 

obvious that Brown corpus and BioProp are much smaller than 

WSJ corpus, not only in terms of the number of sentences, but 

also in the number of predicate-argument structure and verbs 

that are covered.  

In addition to English, we use the newswire domain (TIGER 

newspaper corpus) as the source domain and use the legislation 

domain as the target domain (sampled from the EUROPARL 

corpus) in German. These corpora are a part of CoNLL-2009 

Shared Task. 

2. Experimental Setup 

We have implemented our SRL system for domain 

adaptation with structural learning for experimentation. The 

performance of our basic SRL system (the source model tested 

on the source-domain test data) on CoNLL-2008 data (WSJ 

corpus) is measured to be 83.21% in F-score.  

We have carried out two different experimentations. The 

goal of the first experimentation is to compare the various 

domain-adaptation methods, including ours, based on their 

performances on both of our target domains. For this purpose, 

we have constructed three SRL modules corresponding to FA, 

PRED, and our proposed method. The aim of the second 

experimentation is to have a more sophisticated evaluation. In 

particular, we want to see how our proposed method performs 

in cases where SRL becomes more difficult. For example, it is 

when the usage (meaning) of a predicate in the target domain is 

different from that in the source domain. For this 

experimentation, the biomedical domain has been chosen as 

the target domain. 

All experiments use five-fold cross validation on the target-

domain data set. The training examples in the target-domain 

data set are divided into five partitions of equal size. 

Partitioning is done randomly to guard against any selection 

bias. Our system is built using four of the partitions plus the 

whole source-domain data for training and is tested on the 
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remaining partition of the target-domain data. All experiments 

have been carried out under the environment of Intel Core i5 

CPU of 3.40 GHz with 32 GB RAM and Linux with 64-bit 

OS. 

3. Evaluation Metrics 

To measure performance of our system, we have used the 

evaluation tool distributed for CoNLL-2008 with no change. 

Our system is evaluated in terms of precision (p), recall (r), and 

F-measure. Precision measures how accurate the predictions 

are. It is calculated as the number of correct predictions divided 

by the total number of predictions. Recall is measured as the 

number of correct predictions divided by the actual number of 

relevant instances in the test set. F-measure combines precision 

and recall into a single metric by computing the harmonic 

mean of the two.  

4. Experimental Results 

Our proposed domain-adaptation method is called S-

SVM.Prior in the experiments. The purpose of the first 

experimentation is to see how effective our proposed method is 

for domain adaptation in general. The experimental result on 

the biomedical domain as target is shown in Table 2 and    

Fig. 3(a).  

The result shows how two baselines (SRC-only, TGT-only), 

two domain-adaptation algorithms (FA, PRED), and S-

SVM.Prior perform in the SRL task as the training data size 

varies. The SRC-only baseline achieves 64.09%, which  

 

Table 2. F-measures of compared methods for biomedical domain. 

 0 25 50 100 250 500 1,000 1,300 

SRC-only 64.09 - - - - - - - 

TGT-only - 59.99 62.59 69.31 74.08 78.46 82.42 82.99 

PRED - 61.80 69.08 72.25 76.09 81.06 83.44 84.02 

FA - 67.41 69.66 72.22 75.65 78.24 81.07 82.79 

S-SVM.Prior - 71.70 75.68 78.31 81.90 84.39 85.66 86.41 

 

Table 3. F-measures of compared methods for general-fiction domain. 

 0 25 50 100 200 340 

SRC-only 72.46 - - - - - 

TGT-only - 61.42 66.02 69.88 71.27 73.15 

PRED - 70.30 70.03 73.30 74.68 77.24 

FA - 69.76 70.79 71.88 73.06 75.38 

S-SVM.Prior - 75.39 75.55 75.50 76.69 78.53 

 

 

Fig. 3. Performance results for various DA methods: (a) 

biomedical domain and (b) general-fiction domain. 

Fig. 4. PI and EPI behavior with respect to layers (Type 3). 
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corresponds to a performance drop of near 20% from the WSJ 

source domain results. The TGT-only baseline performs poorly 

in the beginning but improves quickly as the number of target-

domain training data (on the first row of the table) increases. 

Our proposed method, S-SVM.Prior, performs better than 

other domain-adaptation algorithms and the two baselines.  

The result from the experiment using the general-fiction 

domain as target is shown in Table 3 and Fig. 3(b). The result 

of the general-fiction domain is similar to that of the 

biomedical domain. The SRC-only baseline achieves 72.46%, 

which is 10.75% lower than the source domain performance. 

The TGT-only baseline does not reach comparable results with 

domain-adaptation algorithms despite all training data being 

added. Our proposed method shows best performance in this 

experimentation, too. 

The result of the first experimentation shows that our 

proposed algorithm for domain adaptation is the best on both 

target domains. Our method also achieves best performance for 

every training-data size. 
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Table 4. Verb classification with usage. 

 Yes No 

Is the usage 

different in the 

source and  

target domains? 

Activate, bind, encode, 

express, interact, 

modulate, mutate, 

phosphorylate, 

promote, transactivate  

Affect, alter, associate, block, 

decrease, differentiate, enhance, 

increase, induce, inhibit, mediate, 

prevent, reduce, regulate, repress, 

signal, stimulate, suppress, 

transform, trigger 

 

 

Fig. 4. Performance data according to usage: (a) same usage and 

(b) different usage. 

Fig. 4. PI and EPI behavior with respect to layers (Type 3). 
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The second experimentation examines how our proposed 

domain-adaptation method performs when there are a lot of 

variations in difficulty in the SRL task. Difficulty in SRL 

increases when usages (meanings) of predicates are different 

between the source and target domains. For example, if there is 

a change of usage of a predicate when the domain is switched 

from the source to the target, it is hard for the systems to 

achieve correct SRL for the predicate. 

Consider the following two examples for the predicate 

increase [21]: 

Source domain: [Sales]A1 increased a more modest [4.8%]A2 

 

Fig. 5. Performance measured for a target domain in German. 

Fig. 4. PI and EPI behavior with respect to layers (Type 3). 
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in the [South]AM-LOC 

 Target domain: [LTB4]A0 increased the expression of   

the c-fos [gene]A1 in a time- and concentration-dependent 

[manner]AM-MNR 

In the example, “increased” in the source domain has an 

intransitive usage, and “Sales” is A1 (thing increasing). This 

usage can typically be found in the source domain. In contrast, 

“increased” in the target domain is a transitive verb, and 

“LTB4” is A0. Predicates with different usage in the source and 

target domains can cause difficulty for domain adaptation. 

To quantify the difficulty caused by usage difference, we 

split the test data of the target biomedical domain into two sets: 

a set (labeled “same usage”) containing the predicates whose 

usage is the same in the source and target domains, and the 

other set (labeled “different usage”) with the predicates whose 

usage in the source domain is different from that in the target 

domain. To have this categorization of predicates, we refer to 

the data provided in [22]; the result of which is given in Table 4.  

We have tested our proposed DA method using the data sets 

resulting from splitting. The results are shown in Fig. 4. 

Performance results for “SRC-only” indicate that SRL for 

“different usage” is more difficult than that for “same usage.” 

In the case of “same usage,” methods other than our own show 

similar performance; while TGT-only is far worse than others 

in “different usage.” However, what is most notable is that our 

method is superior to all others regardless of usage and data 

size. When the training data size gets large, our method’s 

performance reaches almost the same high value in both usage 

cases. This observation suggests our DA method is effective 

even in difficult SRL cases. The third experimentation 

examines the performance of our proposed method against 

another language (German) in another target domain 

(legislation). The third experimentation has been carried out on 

German using the same experimental setup as before. The 

result of the third experimentation is shown in Fig. 5. As it can 
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be seen in the result, our proposed algorithm also gives the best 

performance.  

All three experimentations explained so far, indicate that our 

domain-adaptation technique for SRL proposed in this paper is 

effective compared to the previous other methods. 

VI. Conclusion 

In this paper, we propose a new domain-adaptation 

technique for semantic role labeling systems that is based on 

structural SVMs to perform SRL and exploits a prior model to 

achieve domain adaptation. We show, by several 

experimentations, that a state-of-the-art multi-domain SRL 

system can be developed by utilizing our proposed method. In 

particular, we introduce a training procedure for a structural 

SVM that adapts the source-domain SVM to a new target 

domain. It is demonstrated in experimentations that our 

proposed domain-adaptation method is superior to other 

methods for the three different target domains used. 

Furthermore, our proposed domain-adaptation method shows 

high performance on various splits of target-domain data by 

usage difference of predicates between the source and target 

domains. 
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