초록
파노라마 영상은 카메라 시야각의 제한을 극복할 수 있으므로 로봇 비전, 스테레오 카메라, 보안 감시 등의 분야에서 효율적으로 연구되고 있다. 파노라마 영상은 사람의 시야각 이상의 넓은 화각을 가진 영상을 구현할 수 있으며 시야각의 현장감을 중심으로 실제로 현장에 있는 듯한 실감 공간을 제공하는 기술이다. 영상에서 기하학적 변화에 강인한 특징점 및 대응점을 검출하고 호모그래피 행렬을 추정하는데 있어서 모든 대응점을 사용하면 연산량이 많아지고 정확한 호모그래피 행렬을 추정하기 어렵다. 따라서 본 논문에서는 전처리 과정에서 입력 영상들의 히스토그램을 비교 분석하여 유사도가 높은 중첩되는 영역을 추정하며 특징점을 검출하기 위해 SURF 알고리즘을 사용하였다. 또한 영상을 입력하는 순서를 해결하여 순서에 제약 없이 영상을 입력하여 파노라마를 생성할 수 있도록 하였다.
The panorama is a good alternative to overcome narrow FOV under study in robot vision, stereo camera and panorama image registration and modeling. The panorama can materialize view with angles wider than human view and provide realistic space which make feeling of being on the scene based on realism. If we use all correspondence, it is too difficult to find strong features and correspondences and assume accurate homography matrix in geographic changes in images as load of calculation increases. Accordingly, we used SURF algorithm to estimate overlapping areas with high similarity by comparing and analyzing the input images' histograms and to detect features. And we solved the problem of input order so we can make panorama by input images without order.