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The robustness of an audio fingerprinting system in an 
actual noisy environment is a major challenge for audio-
based content identification. This paper proposes a high-
performance audio fingerprint extraction method for use 
in portable consumer devices. In the proposed method, a 
salient audio peak-pair fingerprint, based on a modulated 
complex lapped transform, improves the accuracy of the 
audio fingerprinting system in actual noisy environments 
with low computational complexity. Experimental results 
confirm that the proposed method is quite robust in 
different noise conditions and achieves promising 
preliminary accuracy results. 
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I. Introduction 

Audio fingerprinting techniques are used for successfully 
performing content-based audio identification even when audio 
signals are distorted. The audio fingerprints have been mainly 
applied to two identification usage modes: natural audio 
fingerprinting [1] and artificial audio fingerprinting [2]–[3]. 
Natural audio fingerprints are typically invariant characteristics 
of an audio signal, while artificial audio fingerprints are 
information embedded in an audio signal (typically following a 
watermarking strategy) to identify the origin of the audio signal.  

In this paper, we focus on an acoustic audio fingerprinting 
system to detect natural-audio fingerprints. 

Since smart consumer devices have become more ubiquitous, 
several applications of audio fingerprinting have been installed 
in mobile devices. Common uses include query-by-example 
music or advertisement identification [4]–[5], broadcast 
monitoring [6], copyright detection, filtering for file sharing, 
and automatic audio-based content library organization [7].  

A successful audio fingerprinting system needs to satisfy 
several practical requirements [8]. First, it should be able to 
identify corrupted audio clips in spite of degradations caused 
by various noisy environments or distance from the audio 
source. Second, it should be able to identify audio clips that are 
only a few seconds long. Finally, it should be computationally 
efficient — both in calculating the fingerprints and in searching 
for the best match in the database.  

Various methods [9] have been proposed to satisfy the 
aforementioned practical requirements. Among the various 
algorithms, the system developed by Wang [10] has become 
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commercially successful. The robust hash algorithm proposed 
by Haitsma and others [7] is also a well-studied content-based 
music identification or retrieval technique.  

In Wang’s method, each audio track is analyzed using the 
short-time Fourier transform (STFT) to find local prominent 
peaks concentrated in frequency. These peaks are formed into 
pairs within a target area, which is parameterized by the 
frequencies of the peaks and the times in-between them. These 
values are quantized to give a relatively large number of 
distinct landmark hashes. To identify a query, it is similarly 
converted into landmarks. Then, the database is queried to find 
all the reference tracks that share landmarks with the queries 
and to find the relative time differences between where they 
occur in the query and where they occur in the reference tracks. 
Its weakness is that it is not suited for pitch-shifted or time-
stretched audio; the likes of which frequently occur in the 
context of broadcasting monitoring.  

Based on the idea of Wang’ algorithm, Pan and others [11] 
introduced a local energy centroid for generating an audio 
fingerprint, while a real-time peak-discovering method was 
proposed by Jiang and others [12] for audio fingerprinting. 

In Haitsma’s method, an audio track is segmented into 
overlapping frames, and then the spectrum of each, in each 
frame, is logarithmically divided into 33 sub-bands. Finally, the 
fingerprints are determined by the relationship of the energy  
in adjacent sub-bands. To compensate the distorted sub-
fingerprints, the query for the database lookup is expanded into 
hash values within the Hamming distance of a one-bit error 
from the original sub-fingerprint, resulting in 33-times more 
lookup time for audio identification. Its drawbacks are that the 
amount of information is relatively large and that there is poor 
performance with a low signal-to-noise ratio (SNR) [11].  

Park and others introduced frequency-temporal filtering for a 
robust fingerprinting scheme in an actual noisy environment 
based on Haitsma’s algorithm and showed that a frequency-
temporal filtering combination achieves robustness to channel 
and background noise in music identification [13]. Son and 
others [14] proposed a masking, generated by predominant 
pitch estimation, on each sub-fingerprint of Haitsma’s robust 
hashing algorithm. Based on the ideas of both Wang and 
Haitsma, masked audio spectral keypoints for robust audio 
fingerprinting was proposed by Anguera and others [15].  

To improve the accuracy of the audio fingerprinting system, 
a fingerprint should both capture and characterize the essence 
of the audio content. In this paper, based on the idea of Wang’s 
method, a novel audio fingerprint extraction method based on 
the modulated complex lapped transform (MCLT) [16] is 
proposed to improve the robustness of audio fingerprinting in 
an actual noisy environment for an audio-based content 
identification system and in the context of broadcasting 

monitoring.  
The contributions of this paper are as follows: (a) MCLT-

based spectral peaks are estimated and provided to preserve the 
majority of the sound’s peaks more effectively than STFT-
based spectral peaks; (b) using emphasis filtering, the spectral 
peaks in the high-frequency bin are enhanced for generating 
robust peak pairs against attenuation distortions; (c) to obtain 
salient peak pairs against different types of noise and at 
different distances from the audio source, a dynamic peak-
picking threshold based on linear interpolation was used; (d) 
the proposed algorithm improves the robustness of the audio 
fingerprinting in various real environments; and (e) it is 
computationally efficient, delivers high identification accuracy 
(in spite of a short query), and is suitable for use in any 
practical mobile phone.  

This paper is organized as follows. Section II describes the 
proposed method. Section III discusses the experimental results. 
Finally, Section IV presents the conclusion. 

II. Proposed Robust Audio Fingerprint Generation in 
Portable Consumer Devices 

The two key components of the proposed fingerprinting 
system are the fingerprint server and one or more fingerprint 
clients. A fingerprint client, such as a portable consumer device, 
captures an audio clip that is a few seconds long and then 
extracts a robust fingerprint based on an MCLT peak pair and 
submits it to the fingerprint server. The extracted fingerprint is 
then used to query the fingerprint database at the server and is 
compared with the stored fingerprints. If a match is found, then 
the resulting track identifier is retrieved from the server database. 

For robust fingerprint extraction against noise and distortion, 
we propose to use MCLT peak pairs. As shown in Fig. 1, the 
robust MCLT peak pair–based fingerprint extraction method 
 

 

Fig. 1. Block diagram of robust audio fingerprint extraction. 

Preprocessing 

Audio signal 

MCLT 

Emphasis filtering 

Uniform selection of MCLT spectral peak 

Fingerprint generation using MCLT peak pair 

Robust audio fingerprint 

Mean subtraction of logarithmic MCLT spectrum 

 



ETRI Journal, Volume 36, Number 6, December 2014 Hyoung-Gook Kim and Jin Young Kim   1001 
http://dx.doi.org/10.4218/etrij.14.0113.1405 

is composed of six main blocks.  
First, a stereo audio signal, captured by a user’s mobile 

phone, is converted into mono and then downsampled to    
16 kHz. The converted signal is divided into overlapping 
frames by the application of a Hanning window function (each 
of which contains 512 overlapped samples). To find the 
spectral peaks, an MCLT is then applied to each frame (1,024 
samples). A log spectrum is generated by taking the log 
modulus of each MCLT coefficient. From the logarithmic 
MCLT spectrum, a frequency-time averaged MCLT spectrum 
is calculated and subtracted, thus yielding a normalized 
logarithmic MCLT spectrum. To increase the local spectral 
peaks of high frequencies against attenuation distortion, an 
emphasis filter is applied to each normalized logarithmic 
MCLT spectrum. The emphasis-filtered MCLT spectral peaks 
are fed into a uniform selection step, where the salient peaks 
are selected by applying appreciative forward and backward 
filtering using a dynamic peak-picking threshold. In a local 
target area of the frequency-time plane, nearby salient MCLT 
peaks are combined into a pair or landmark. Landmarks are 3-
tuples, using start frequency, frequency difference, and time 
difference of the pair of peaks, and are converted into hashes 
with a 32-bit value. The robust fingerprint generated in 
consumer devices is submitted to the fingerprint server for 
content-based identification. 

1. Time-to-MCLT and Its Logarithmic Mean Subtraction 

First, the audio signal, s(n), is segmented into a Hanning-
windowed overlapping frame and analyzed using the MCLT 
(which has a complex-valued portion based on a discrete 
Fourier transform), and is given by 

( ) ( ) ( )MCLT , , 1, ,S k l jV k l V k l= + +        (1) 

using 

( ) ( ) ( ), , , ,V k l b k l U k l= ⋅               (2) 
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where k is the frequency bin index, l is the time frame index, h 
is an analysis window of size N, and M is the framing step. 
Also, U(k, l) is a 2N-point fast Fourier transform (FFT) with an 
orthonormal basis function of the input block s(n). This means 
that the MCLT coefficients can be generated by computing the  

 

Fig. 2. Spectrogram of MCLT compared to FFT: (a) spectrogram 
of FFT and (b) spectrogram of MCLT. 
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FFT of s(n) to obtain U(k, l) and by carrying out the operations 
with factor b(k, l). Unlike orthogonal transforms, such as FFT, 
using b(k, l) and complex-valued transform coefficients, the 
MCLT has a significant overlap in its frequency response for 
the basis functions and provides twice-frequency resolution. 
Therefore, the MCLT has approximate shift invariance 
properties [17]. The spectral peaks detected by the MCLT 
preserve the majority of the original sound’s peaks more 
effectively than the STFT-based spectral peaks, against 
different distortions caused by additive noise, additive echo, 
and coding artifacts; a sufficient number of peak pairs can, 
therefore, be identified as coming from the same reference 
track. Figure 2 illustrates the spectrogram of the MCLT 
compared to FFT. 

Using a comparison of the searched minimum value of the 
previous frame and the MCLT spectrum, the minimum Smin(k, l) 
of the local energy is searched for in all frames. From the 
searched minimum values, the maximum of Smin(k, l) in each 
frequency bin is obtained by the following:  

( ) ( ) ( ){ }max MCLT min, max , , 1, , 0 .S k l S k l S k l k K= − ≤ < (6) 
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Then, a logarithmic operation of each MCLT coefficient is 
performed by comparison of the MCLT spectrum and Smax(k, l), 
and is given by 

( ) ( )
( ) ( )( )
( ) ( )( )

MCLT max

log 10 MCLT

log 10 max

If        , , ,

then    , log , ;

else     , log , .

S k l S k l

S k l S k l

S k l S k l

>

=

=

     (7) 

From the logarithmic MCLT spectrum Slog(k, l), the mean 
Smean of the MCLT spectrum is estimated and subtracted in 
every frame to minimize the ripple in the low and high ends of 
the logarithmic MCLT spectrum. 

( ) ( )norm log mean, ,S k l S k l S= − ,          (8) 
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2. Emphasis Filtering and Uniform Selection of Salient 
MCLT Spectral Peaks 

An emphasis filter is applied to the normalized logarithmic 
MCLT spectrum by  

( ) ( ) ( )F norm, , ,
Q

j Q

S k l F k j S k l j
=−

= ⋅ −∑ .      (10) 

Generally, high-frequency components of the audio signal 
are susceptible to the noise effect. The emphasis filter is 
designed to increase the magnitude or spectral peaks of high 
frequencies with respect to the magnitude of other (usually 
lower) frequencies. The emphasis filtering is performed across 
successive frames and frequency bins. This improves the 
overall SNR of the normalized logarithmic MCLT spectrum by 
minimizing the adverse effects of phenomena such as 
attenuation distortions, which do not degrade subjective sound 
quality. In the present implementation, the band-specific non-
causal FIR with Q = 10 is used. 

An emphasis-filtered time-frequency point, SF(k, l), is a 
candidate peak if it has a higher energy content than all its 
neighbors in a region centered around the point. Candidate 
peaks are chosen according to a density criterion to assure that 
the time-frequency strip for the audio file has reasonably 
uniform coverage. The peaks in each time-frequency locality 
are also chosen according to amplitude, with the justification 
that the highest amplitude peaks are most likely to survive the 
distortions. 

Figure 3 depicts the uniform selection of MCLT spectral 
peaks to obtain noise-robust salient peaks. The noise-robust 
salient peak extraction procedure based on forward and 
backward filtering using dynamic peak-picking threshold is as  

 

Fig. 3. Block diagram of uniform selection of MCLT spectral 
peak using forward and backward filtering. 
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follows. 

Step 1. Initial forward threshold computing. A frame-wise 
comparison of the emphasis-filtered MCLT spectral peak and 
the maximum value of the previous frame within J frames 
yields the maximum value for each frequency bin, given by 

( ) ( ) ( ){ }max F max, 0 max , , , 1 , 0F k S k l F k l l J= − ≤ ≤ . (11) 

Using the basic assumption that a transition from a positive to a 
negative slope occurs, transited high peaks, Fs(k, l), are selected 
from Fmax(k, l). Each transited peak is linearly interpolated and 
used as an initial forward threshold, Tf (k, 0), for the first frame.  
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 (12) 
where k  ̀(kpre< k  ̀< k) is the frequency index between kpre and k, 
and kpre is a previous frequency index where the transited peaks 
are found. 

Step 2. Forward high peak selection and dynamic peak-
picking threshold update. All peaks of SF(k, l) higher than the 
forward threshold Tf (k, l) are stored in a set of (k, l) tuples 
named FHPs. 

( ) ( ) ( )F f
F

FHP if , , ,
,

non-FHP otherwise.

S k l T k l
S k l

⎧ >⎪= ⎨
⎪⎩

    (13) 

If the FHP is selected among SF(k, l), then the FHP is 



ETRI Journal, Volume 36, Number 6, December 2014 Hyoung-Gook Kim and Jin Young Kim   1003 
http://dx.doi.org/10.4218/etrij.14.0113.1405 

represented as Pf (k, l) and the peak-picking threshold is 
updated by raising the previous threshold with the linear 
interpolation of all new peaks. 
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The new peak-picking threshold for the next frame is 
dynamically obtained by comparing the previous threshold 
attenuated with a decay factor, d(k, l), with the updated forward 
peak-picking threshold Tfup(k, l). 

( ) ( ) ( ) ( )( )fup, max , 1 , 1 , ,f fT k l d k l T k l T k l= − ⋅ − ,  (15) 

using the following decay factor: 
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− = ⋅ − ≤ ≤⎜ ⎟⎜ ⎟

⎝ ⎠
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where m and σ represent the mean and variance of the 
frequency bands of each threshold value, respectively. The 
threshold using the decay factor helps to extract more salient 
peak-pairs for comparing the query fingerprint with the original 
fingerprints. 

Figure 4 illustrates examples of steps 1 and 2. The upper red 
line in Fig. 4 represents the dynamic peak-picking threshold, 
while the lower red line represents the updated dynamic peak-
picking threshold. The green line represents the forward higher 
peaks, which are higher than the dynamic peak-picking threshold. 

Step 3. Steps 2 to 3 are repeated for l = l + 1 until all frames 
are processed.  

Step 4. Backward high peak extraction. To extract the noise-
distorted robust salient peaks, steps 1 to 3 are repeated but from 
the last frame back and considering only (k, l) tuples already in 
FHP. This is referred to as “pruning”.  
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using 
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where Pb(k, l) is the salient peak after backward filtering using  

 

Fig. 4. Dynamic peak-picking threshold updating. 
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Fig. 5. Salient peaks of proposed MCLT-based method compared 
to Wang’s approach: (a) salient peaks of Wang’s approach
and (b) salient peaks of proposed MCLT-based method. 
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the dynamic peak-picking threshold Tb(k, l), and Tbup(k, l) is the 
updated backward peak-picking threshold. 

Figure 5 presents the salient peaks (black dots) discovered by 
the proposed method compared to those of Wang’s approach.  
As shown in Fig. 5, the proposed method provides more salient 
spectral peaks than Wang’s approach so as to improve the 
accuracy of the identification.  

3. Fingerprint Hashes Using MCLT Peak Pair 

Fingerprint hashes are generated by associating the time-
frequency information of Pb(k, l) pairs. As in Wang’s approach, 
we use pairs of peaks. However, a new type of hash is defined 
and used to improve the identification accuracy against time 
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stretching and pitch shifting. Each peak pair (called a 
landmark) is selected as an anchor point and paired with 
nearby landmarks from within a defined zone (including the 
pairing horizon in time and in frequency). Assuming that   
Pb(ka, la) is the anchor point and that it is paired with another 
landmark point Pb(kp, lp), its hash, h, is obtain by 

( ) ( )( ){ }
( )

a p a p a p a p a

a

, ,

   , , .

h k l l k k k k l l

k l k k l

= − − − −

= Δ Δ Δ Δ
       (20) 

All k (in frequency bins) and l (in frames) are integers with a 
fixed higher bound, so each landmark point generates a fixed 
number of pairs. The first component, kaΔl, is a rough 
frequency location of the pair of peaks. The second component, 
Δk, is the spectral extent of the pair in the MCLT domain and 
provides good robust performance under time stretching or 
time-scale modification. Time-scale modification refers to the 
process of changing the speed or duration of an audio signal 
without affecting its pitch. Due to the vertical frequency axis, 
Δk is limited to a lower value than kp. In addition, the 
component Δl is the time extent of the pair in the MCLT 
domain and provides good robust performance under pitch 
shifting. Pitch shifting refers to the process of changing the 
pitch of an audio signal without affecting its speed. Due to the 
horizontal time axis, Δl is limited to a lower value than lp. As 
this hash takes into account relative time–frequency 
information (that is, the third component ΔkΔl), it is robust to 
cropping, time stretching, and pitch shifting within the defined 
zone. If the time stretching and pitch shifting occur over the 
defined zone, then the identification is decreased. 

Finally, the generated hash extracted in the mobile phone is 
used as a query for audio fingerprinting.  

4. Building of Fingerprint Database and Identification 

When building the fingerprint database at the server, a 
database index is created by a fingerprint hash, and a Track ID 
and time-frequency offset of the hash are stored according to 
the hash value to facilitate fast processing.  

In retrieval or identification processing [9], the similarity 
searches of audio are performed in the fingerprinting domain. 
A query signal is fingerprinted in the user’s mobile phone, and 
the resulting hashes are compared against the hashes stored in 
the database hash table. After all matching hashes are found, a 
candidate set, cset, of match segments can be obtained by 
combining the Track ID stored in the database and the    
time–frequency offset of the hash in the query audio as 
follows:  

( )set ,c ID k l= Δ Δ .              (21) 

 

Fig. 6. Matching results of proposed MCLT-based method 
compared to Wang’s approach: (a) matching results of 
Wang’s approach and (b) matching results of proposed 
MCLT-based method. 
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The differences ΔkΔl, between where the relative frequency– 
time extent occur in the query fingerprint and where they occur 
in the candidate set of fingerprints (references), are stored in the 
histogram (one histogram per reference). If the query frame 
corresponds to the reference m starting at time l, then its 
fingerprint will have more pairs in common with m’s 
fingerprint than with any another reference fingerprint and will 
show a higher matching histogram than any other matching 
histogram. That is, the Track ID with the largest number of the 
same (or very similar) frequency–time extent is determined to 
be the matched result.  

Figure 6 represents the matching results (black lines) of the 
proposed method compared to those of Wang’s approach. 
Since the proposed method provides a larger matching number 
than Wang’s approach, as shown in Fig. 6, the proposed 
method can obtain a higher identification accuracy than that of 
Wang’s approach.  

In addition, a statistical filter to remove the continuity and 
redundancy was applied to the matching process for improving 
the query and response accuracy from the database. 

III. Experimental Results 

In this subsection, the performance of the proposed MCLT 
peak-pair fingerprint extraction algorithm is evaluated. 
Additionally, the performance of the algorithm is compared 
with the modified implementations of four previous methods. 
Method 1 is an STFT-based peak-pair fingerprint extraction 
method proposed by Wang [10], while Method 2 is an audio 
fingerprint method using sub-fingerprint masking based on the 
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predominant pitch extraction [11]. Method 3 is an audio 
fingerprint extraction based on the masked audio spectral 
keypoints [15]. Method 4 is a local feature extraction from 
adaptively scaled patches of the time-chroma representation of 
the audio signal [18].  

For experiments, three test database types were selected. Set 
I consists of a database of 7,000 songs from different genres 
such as pop, hip-hop, jazz, and classical. Set II is a database 
containing 4,000 TV advertisements with a total time 
amounting to 740 hours, and each advertisement ranges from 
10 to 15 minutes in length. Set III comprises a database of 
6,000 TV programs from various genres, such as drama, shows, 
comedy, and animation.  

All of the audio data are stored in PCM format with mono, 
16-bit depth, and 16 kHz sampling rate converted from real 
audio data in consideration of portable devices, such as 
mobile phones. Audio query clips with lengths of two, three, 
four, and five seconds were captured using a mobile phone, 
which was placed at 5 or 7 meters from a 2.1-channel 
loudspeaker connected to a TV or radio. Through a built-in 
fingerprint generation module in the mobile phone, the 
MCLT peak-pair fingerprint is extracted from the captured 
audio clip and submitted as a query to the matching module 
at the server site.  

With the randomly created 3,000 queries, query sets are 
created by adding various types of noise of different levels. 
Five different types of noise (babble noise, moving car noise, 
white noise, street noise, and computer fan noise) have been 
artificially added to different portions of the database at SNRs 
ranging from clean to 12 dB, and 6 dB. The audio query is 
converted to a standard PCM format, which is sampled at 16 
kHz and quantized with 16 bits in a mono-channel. Audio 
query data are captured from 1,000 randomly selected audio 
samples per set. Each audio sample is played 30 times at 
randomly set offsets. 

Table 1 depicts the experimental results of the four methods 
when a five-second-long query from Set I was used. MW, MS, 
MC, MX, and MCLT denote Method 1, Method 2, Method 3, 
Method 4, and the proposed method, respectively. The 
recognition results under the five different noisy environments 
are averaged for the evaluation. As shown in Table 1, the best 
recognition accuracy was 98.5% for query-by-example music 
identification, which was obtained with the proposed MCLT. 
The recognition rates of MW and MS were similar, but lower 
than those of MCLT. MX yields the lowest identification rate 
and provides worse results at SNR 0 dB. 

Table 2 presents the results of the advertisement 
identification performed on a Set II database. The recognition 
accuracies for advertisement identification are not better than 
those of Table 1 for music identification, because some  

Table 1. Comparative performance of four schemes with Set I. 

SNR 
Averaged recognition rate (%) 

MCLT MW [8] MS [9] MC [13] MX [16]

Clean 98.5 95.5 96.6 94.8  93.5 

12 dB 96.8 94.2 95.3 89.6  78.9 

6 dB 93.6 83.4 84.5 77.5  63.8 

0 dB 80.7 70.6 70.8 61.7  57.6 

Total 92.4 85.9 86.8 80.9  73.5 

 

Table 2. Comparative performance of four schemes with Set II. 

SNR 
Averaged recognition rate (%) 

MCLT MW [8] MS [9] MC [13] MX [16]

Clean 95.5 93.6 94.5 93.5 92.6 

12 dB 94.3 89.3 92.8 86.2 75.4 

6 dB 91.7 80.6 81.7 74.6 60.2 

0 dB 78.6 67.5 67.9 58.5 53.4 

Total 90.0 82.8 84.2 78.2 70.4 

 

Table 3. Comparative performance four schemes with Set III. 

SNR 
Averaged recognition rate (%) 

MCLT MW [8] MS [9] MC [13] MX [16]

Clean 92.7 89.6 89.7 87.4 86.5 

12 dB 91.5 86.7 89.5 82.4  76.8 

6 dB 87.9 80.8 78.3 72.6  60.9 

0 dB 75.5 66.5 65.5 55.6 51.7 

Total 86.9 80.9 80.8 74.5 68.9 

 

 
advertisements in Set II contain silent segments. The query was 
captured frequently from the silent segments and used for the 
matching. Also, the proposed MCLT yields better performance 
than MW, MS, MC, and MX. 

The results of the identification of TV (or radio) programs 
are shown in Table 3. Compared with the results in Tables 1 
and 2, the results in Table 3 are not as high, because TV 
programs contain similar sound segments. The proposed 
MCLT method generally outperforms the other four methods 
in identification accuracy, especially in noisy environments. 

Table 4 shows the recognition performance of the MCLT 
scheme for when the query length was changed. This result 
shows that the performance increases as the length of the query 
increases. Also, the proposed scheme shows satisfactory 
performance with four- and five-second-long queries, showing 
a recognition rate above 90%. 
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To cover a wide variety of robustness requirements for real-
world application scenarios, Set I database was selected and the 
following signal modifications were carried out as a robustness 
test of the accuracy of the proposed audio fingerprinting 
system:  
■ Resampling: downsampling to 8 kHz and then upsampling 

back, upsampling to 32 kHz and then downsampling back. 
■ Equalization: gain –5 dB and 3 dB from 31 Hz to 16 kHz. 
■ Noise addition: SNR 6 dB, street noise. 
■ Echo addition: from 100 ms to 500 ms, 50% echo addition. 
■ Time stretching: from 70% to 150%. Only the pitch changes; 

the time duration remains unaffected. 
■ Pitch shifting: from –50% to +50%. Only the tempo changes; 

the pitch remains unaffected. 

The identification results of the proposed method for 
different signal distortions are presented in Table 5 compared to 
those of the method based on peak discovery in two-direction 
scanning (TWS). The applied TWS method is modified from 
the contents of the reference paper and then implemented. As 
shown in the results in Table 5, the averaged identification rates 
of the proposed method are higher than those of TWT. In the 
proposed method, in addition to time stretching and pitch 
shifting, the averaged identification results are decreased from 
98.5% to 87.9% for time stretching and 92.3% for pitch 
shifting. 
 

Table 4. Performance evaluation according to query length. 

SNR 
Averaged recognition rate (%) 

2 sec 3 sec 4 sec 5 sec 

Clean 76.8 91.5 95.1 98.5 

12 dB 71.5 90.7 94.3 96.8 

6 dB 63.3 84.7 91.8 93.6 

0 dB 55.6 76.5 81.7 80.7 

Total 66.8 85.9 90.7 92.4 

 

Table 5. Comparative performance under different distortions. 

Types of distortions 
Averaged recognition rate (%) using 5 s query

MCLT TWS 

Resampling 98.5 92.5 

Equalization 98.5 92.5 

Noise addition 92.8 78.7 

Echo addition 98.5 84.6 

Time-stretching 87.9 65.3 

Pitch-shifting 92.3 67.4 

 

IV. Conclusion 

A salient audio peak-pair fingerprint extraction method, 
based on a modified spectrogram representation of the audio 
signal called the modulated complex lapped transform, has 
been proposed and evaluated. The proposed algorithm 
enhances Wang’s fingerprint algorithm by generating local, 
stable salient peak-pair fingerprints based on MCLT; thus, it 
improves the accuracy of the audio fingerprinting system in the 
various real environments. The experimental results show that 
the proposed method has respectable results compared to other 
methods. However, the proposed method is clearly not robust 
enough with regards to time stretching and pitch shifting. An 
enhanced robust method is, therefore, needed. In future work, 
focus will be centered on the optimization of a more robust 
fingerprint extraction and search algorithm and on the 
combination of audio and visual fingerprints for a more robust 
content identification. The method will be applied to content 
security applications running on smart TVs and mobile phones. 
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