DOI QR코드

DOI QR Code

Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes

  • Oh, Sihyun (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Jung, Narae (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Lee, Jongwon (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Kim, Jinho (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Park, Ki-Min (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kang, Youngjin (Division of Science Education & Department of Chemistry, Kangwon National University)
  • Received : 2014.08.02
  • Accepted : 2014.08.26
  • Published : 2014.12.20

Abstract

Blue phosphorescent $(dfpypy)_2Ir(mppy)$, where dfpypy = 2',6'-difluoro-2,3'-bipyridine and mppy = 5-methyl-2-phenylpyridine, has been synthesized by newly developed effective method and its solid state structure and photoluminescent properties are investigated. The glass-transition and decomposition temperature of the compound appear at $160^{\circ}C$ and $360^{\circ}C$, respectively. In a crystal packing structure, there are two kinds of intermolecular interactions such as hydrogen bonding ($C-H{\cdots}F$) and edge-to-face $C-H{\cdots}{\pi}(py)$ interaction. This compound emits bright blue phosphorescence with ${\lambda}_{max}=472nm$ and quantum efficiencies of 0.23 and 0.32 in fluid and the solid state. The emission band of the compound is red-shifted by 40 nm relative to homoleptic congener, $Ir(dfpypy)_3$. The ancillary ligand in $(dfpypy)_2Ir(mppy)$ has been found to significantly destabilize HOMO energy, compared to $Ir(dfpypy)_3$, $(dfpypy)_2Ir(acac)$ and $(dfpypy)_2Ir(dpm)$, without significantly changing LUMO energy.

Keywords

References

  1. (a) Lee, S. J.; Park, K.-M.; Yang, K.; Kang, Y. Inorg. Chem. 2009, 48, 1030. https://doi.org/10.1021/ic801643p
  2. (b) Park, J.; Oh, H.; Oh, S.; Kim, J.; Park, H. J.; Kim, O. Y.; Lee, J. Y.; Kang, Y. Org. Electron. 2013, 14, 3228. https://doi.org/10.1016/j.orgel.2013.09.017
  3. (c) Jung, N.; Lee, E.; Kim, J.; Park, H.; Park, K.-M.; Kang, Y. Bull. Korean Chem. Soc. 2012, 33, 183. https://doi.org/10.5012/bkcs.2012.33.1.183
  4. (d) Yang, C.-H.; Mauro, M.; Polo, F.; Watanabe, S.; Muenster, I.; Froohlich, R.; De Cola, L. Chem. Mater. 2012, 24, 3684. https://doi.org/10.1021/cm3010453
  5. (e) Kessler, F.; Costa, R. D.; Di Censo, D.; Scopelliti, R.; Orti, E.; Bolink, H. J.; Meier, S.; Sarfert, W.; Gratzel, M.; Nazeeruddin, M. K.; Baranoff, E. Dalton Trans. 2012, 41, 180. https://doi.org/10.1039/c1dt10698h
  6. Kang, Y.; Chang, Y.-L.; Lu, J.-S.; Ko, S.-B.; Rao, Y.; Varlan, M.; Lu, Z.-H.; Wang, S. J. Mater. Chem. C 2013, 1, 441. https://doi.org/10.1039/c2tc00270a
  7. Oh, H.; Park, K.-M.; Hwang, H.; Oh, S.; Lee, J. H.; Lu, J.-S.; Wang, S.; Kang, Y. Organometallics 2013, 32, 6427. https://doi.org/10.1021/om400770h
  8. Schmidbauer, S.; Hohenleutner, A.; Konig, B. Adv. Mater. 2013, 25, 2114. https://doi.org/10.1002/adma.201205022
  9. (a) Yersin, H. Highly Efficient OLEDs with Phosphorescent Materials; Wiley-VCH: Weinheim, Germany, 2008.
  10. (b) Yun, C.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638. https://doi.org/10.1039/b916237b
  11. (c) Ho, C.-L.; Wong, W.-Y. New J. Chem. 2013, 37, 1665. https://doi.org/10.1039/c3nj00170a
  12. (d) Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259. https://doi.org/10.1039/c3cs60449g
  13. (e) Lee, J.; Oh, H.; Kim, J.; Park, K.-M.; Yook, K. S.; Lee, J. Y.; Kang, Y. J. Mater. Chem. C 2014, 2, 6040. https://doi.org/10.1039/C4TC00715H
  14. McGee, K. A.; Mann, K. R. Inorg. Chem. 2007, 46, 7800. https://doi.org/10.1021/ic700440c
  15. Kessler, F.; Watanabe, Y.; Sasabe, H.; Katagiri, H.; Nazeeruddin, Md. K.; Gratzel, M.; Kido, J. J. Mater. Chem. C 2013, 1, 1070.
  16. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005, 44, 7992. https://doi.org/10.1021/ic051296i
  17. Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Uenno, K. J. Am. Chem. Soc. 2003, 125, 12971. https://doi.org/10.1021/ja034732d
  18. Lamansky, S.; Djurovich, P.; Murphy, D.; Razzaq, F. A.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  19. Park, H.; Rao, Y.; Varlan, M.; Kim, J.; Ko, S.-B.; Wang, S.; Kang, Y. Tetrahedron 2012, 68, 9278. https://doi.org/10.1016/j.tet.2012.08.056
  20. Liu, C.; Yang, W. Chem. Commun. 2009, 6267.
  21. Bruker, SMART and SAINT: Area Detector Control and Integration Software Ver. 5.0; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.
  22. Bruker, SHELXTL: Structure Determination Programs Ver. 5.16; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.