DOI QR코드

DOI QR Code

The Study of Adsorption Structures of 3-Methyl-5-Pyrazolone on the Ge(100) Surface

  • Lee, Myungjin (Department of Chemistry, Sookmyung Women's University) ;
  • Lee, Hangil (Department of Chemistry, Sookmyung Women's University)
  • Received : 2014.07.06
  • Accepted : 2014.08.20
  • Published : 2014.12.20

Abstract

The most stable adsorption structures and energies of four tautomers of 3-methyl-5-pyrazolone (keto-1, enol-1, keto-2, and enol-2) on Ge(100) surfaces were investigated using density functional theory (DFT) calculations. The enol-1, keto-2, and enol-2 tautomers, but not the keto-1 tautomer, were found to exhibit stable adsorption structures on the Ge(100)-$2{\times}1$ surface. Of these three adsorption structures, that of enol-2 is the most stable.

Keywords

References

  1. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864. https://doi.org/10.1103/PhysRev.136.B864
  2. Ghosh, A. J. Biol. Inorg. Chem. 2006, 11, 671. https://doi.org/10.1007/s00775-006-0134-5
  3. Lee, M.; Park, Y.; Lee, H. Chem. Phys. Lett. 2013, 567, 66. https://doi.org/10.1016/j.cplett.2013.03.003
  4. Lim, H.; Yang, S.; Lee, M.; Kim, S.; Lee, H. Chem. Phys. Lett. 2013, 578, 162. https://doi.org/10.1016/j.cplett.2013.06.001
  5. Park, Y.; Lee, M.; Lee, H. ChemPhysChem 2013, 14, 2491. https://doi.org/10.1002/cphc.201300124
  6. Yang, S.; Park, Y.; Kim, J.; Lee, H. J. Phys. Chem. C 2011, 115, 19287. https://doi.org/10.1021/jp206442s
  7. Yang, S.; Park, S.; Kim, K.; Lee, H. Chem. Asian J. 2011, 6, 2362. https://doi.org/10.1002/asia.201100004
  8. Filler, M. A.; Bent, S. F. Prog. Surf. Sci. 2003, 73, 1. https://doi.org/10.1016/S0079-6816(03)00035-2
  9. Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665. https://doi.org/10.1038/35015043
  10. Goede, K.; Busch, P.; Grundmann, M. Nano. Lett. 2004, 4, 2115. https://doi.org/10.1021/nl048829p
  11. Smith, R. K.; Lewis, P. A.; Weiss, P. S. Prog. Surf. Sci. 2004, 75, 1. https://doi.org/10.1016/j.progsurf.2003.12.001
  12. Kachian, J. S.; Jung, S. J.; Kim, S.; Bent, S. F. Surf. Sci. 2011, 605, 760. https://doi.org/10.1016/j.susc.2011.01.015
  13. Honda, S.; Akao, E.; Suzuki, S.; Okuda, M.; Kakehi, K.; Nakamura, J. Analytical Biochemistry 1989, 180, 351. https://doi.org/10.1016/0003-2697(89)90444-2
  14. Strydom, D. J. J. Chromatogr. A 1994, 678, 17. https://doi.org/10.1016/0021-9673(94)87069-1
  15. Brogden, R. N. Drugs 1986, 32, 60. https://doi.org/10.2165/00003495-198600324-00006
  16. Montero, L. A.; Esteva, A. M.; Molina, J.; Zapardiel, A.; Hernandez, L.; Marquez, H.; Acosta, A. J. Am. Chem. Soc. 1998, 120, 12023. https://doi.org/10.1021/ja981176s
  17. Alei, M., Jr.; Morgan, L. O.; Wageman, W. E.; Whaley, T. W. J. Am. Chem. Soc. 1980, 102, 2881. https://doi.org/10.1021/ja00529a002
  18. Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793. https://doi.org/10.1021/cr990029p
  19. Schreiner, P. R. Angew. Chem. Int. Ed. 2007, 46, 4217. https://doi.org/10.1002/anie.200700386
  20. Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974. https://doi.org/10.1021/jp960669l
  21. Gill, P. M. W.; Johnson, B. G.; Pople, J. A. Chem. Phys. Lett. 1992, 197, 499. https://doi.org/10.1016/0009-2614(92)85807-M
  22. Chermette, H. J. Comp. Chem. 1999, 20, 129. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
  23. Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2001, 105, 2936. https://doi.org/10.1021/jp004262z
  24. Durant, J. L. Chem. Phys. Lett. 1996, 256, 595. https://doi.org/10.1016/0009-2614(96)00478-2
  25. Wiest, O.; Black, K. A.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 10336. https://doi.org/10.1021/ja00101a078
  26. Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210. https://doi.org/10.1021/ja0471525

Cited by

  1. Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface vol.121, pp.38, 2017, https://doi.org/10.1021/acs.jpcc.7b07691