DOI QR코드

DOI QR Code

Study on Anharmonic Effect of the Unimolecular Reaction of CH2(D2)FO

  • Zhong, Jingjun (Dalian Maritime University) ;
  • Li, Qian (Dalian Maritime University) ;
  • Luo, Ji (Dalian Maritime University) ;
  • Xia, Wenwen (Dalian Maritime University) ;
  • Yao, Li (Dalian Maritime University) ;
  • Lin, S.H. (Department of Applied Chemistry, National Chiao-Tung University)
  • Received : 2014.04.12
  • Accepted : 2014.08.19
  • Published : 2014.12.20

Abstract

Study on the unimolecular reaction for $CH_2FO$ and $CD_2FO$ is carried out. The structures, energy barriers and zero point energy of the three channels in the title unimolecular reactions are computed with the MP2/6-311++G(3df, 3pd) method. RRKM theory is used to calculate the rate constants of canonical case at temperature range of 500-5000 K and microcanonical system at total energy of 19.05-71.68 kcal/mol. The results indicate that the anharmonic effect and isotope effect are very small for the three channels, and the anharmonic rate constants, around $10^9-10^{11}s^{-1}$, are close to the experimental prediction reasonably.

Keywords

References

  1. Rayez, J. C.; Rayez, M. T.; Halvick, P.; Duguay, B.; Dannenberg, J. J. Chem. Phys. 1987, 118, 265.
  2. Dibble, T. S. J. Mol. Struct. 1999, 67-71, 485.
  3. Zachariah, M. R.; Westmoreland, P. R.; Burgess, D. R., Jr., Tsang, W.; Melius, C. F. J. Phys. Chem. 1996, 100, 8737. https://doi.org/10.1021/jp952467f
  4. Tuazon, E. C.; Atkinson, R. J. Atmos. Chem. 1993, 17, 179. https://doi.org/10.1007/BF00702825
  5. Wallington, T. J.; Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1995, 99, 9437. https://doi.org/10.1021/j100023a021
  6. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, N. K.; Burant, J. C.; Millam, J. M.; Lyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hasa, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewshi, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, O.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSS 03, revision C.02, Gaussian Inc.: Wallingford, CT, 2004.
  7. Krems, R.; Nordholm, S. Z. Phys. Chem. 2000, 214, 1467.
  8. (a) Shen, D.; Pritchard, H. O. J. Chem. Soc. Faraday Trans. 1996, 92(8), 1297. https://doi.org/10.1039/ft9969201297
  9. (b) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253. https://doi.org/10.1021/cr990050q
  10. (a) Tou, J. C.; Lin, S. H. J. Chem. Phys. 1968, 49, 4187. https://doi.org/10.1063/1.1670734
  11. (b) Lin, S. H.; Eyring, H. J. Chem. Phys. 1963, 39, 1577.
  12. (c) Lin, S. H.; Eyring, H. J. Chem. Phys. 1964, 43, 2153.
  13. (a) McDowell, S. A. C. J. Mol. Struct. Theochem 2006, 770, 119. https://doi.org/10.1016/j.theochem.2006.05.037
  14. (b) Bhuiyan, L. B.; Hase, W. L. J. Chem. Phys. 1983, 78, 5052. https://doi.org/10.1063/1.445373
  15. Peslherbe, G. H.; Hase, W. L. J. Chem. Phys. 1996, 105, 7432. https://doi.org/10.1063/1.472571
  16. (a) Stein, S. E.; Rabinovitch, B. S. J. Chem. Phys. 1973, 58, 2438. https://doi.org/10.1063/1.1679522
  17. (b) Beyer, T.; Swinehart, D. F. Commun. Assoc. Comput. Machines 1973, 16, 379.
  18. (c) Mills, I. M. Theoretical Chemistry; The Chemical Society: Quantum Chemistry, London, 1974; Vol. 1, p 110.
  19. (d) Schlag, E. W.; Sandsmark, R. A. J. Chem. Phys. 1962, 37, 168. https://doi.org/10.1063/1.1732944
  20. (a) Hase, W. L. Acc. Chem. Res. 1998, 31, 659. https://doi.org/10.1021/ar970156c
  21. (b) Song, K.; Hase, W. J. Chem Phys. 1999, 110, 6198. https://doi.org/10.1063/1.478525
  22. Bagratashvilli, V. N.; Letokhov, V. S.; Makarov, A. A.; Ryabov, E. A. Laser Chem. 1983, 1, 211. https://doi.org/10.1155/LC.1.211
  23. Mitra, S. S.; Bhattacharyya, S. S. J. Phys. B: At. Mol. Opt. Phys. 1994, 27, 1773. https://doi.org/10.1088/0953-4075/27/9/015
  24. (a) Troe, J. Chem. Phys. 1995, 190, 381. https://doi.org/10.1016/0301-0104(94)00358-H
  25. (b) Troe, J. J. Phys. Chem. 1979, 83, 114. https://doi.org/10.1021/j100464a019
  26. (c) Troe, J. J. Chem. Phys. 1983, 79, 6017. https://doi.org/10.1063/1.445784
  27. (d) Romanini, D.; Lehmann, K. K. J. Chem. Phys. 1993, 98, 6437. https://doi.org/10.1063/1.464808
  28. (a) Forst, W.; Prasil, Z. J. Chem. Phys. 1970, 53, 3065. https://doi.org/10.1063/1.1674450
  29. (b) Forst, W. Chem. Rev. 1971, 71, 339. https://doi.org/10.1021/cr60272a001
  30. (c) Forst, W. Theory of Unimolecular Reactions; Academic Press: New York, 1973.
  31. Hoare, M. R.; Ruijgrok, Th. W. J. Chem. Phys. 1970, 52, 113. https://doi.org/10.1063/1.1672655
  32. Eyring, H. J. Chem. Phys. 1935, 3, 107. https://doi.org/10.1063/1.1749604
  33. (a) Yao, L.; Mebel, A. M.; Lu, H. F.; Neusser, H. J.; Lin, S. H. J. Phys. Chem. A 2007, 111, 6722. https://doi.org/10.1021/jp069012i
  34. (b) Yao, L.; Lin, S. H. Mod. Phys. Lett. B 2008, 22, 3043. https://doi.org/10.1142/S0217984908017552
  35. (c) Yao, L.; Lin, S. H. Science in China Series B 2008, 51, 1146. https://doi.org/10.1007/s11426-008-0125-1
  36. (d) Yao, L.; He, R. X.; Mebel, A. M.; Lin, S. H. Chem. Phys. Lett. 2009, 470, 210. https://doi.org/10.1016/j.cplett.2009.01.074
  37. (e) Shao, Y.; Yao, L.; Lin, S. H. Chem. Phys. Lett. 2009, 478, 277. https://doi.org/10.1016/j.cplett.2009.07.051
  38. (f) Yao, L.; Mebel, A. M.; Lin, S. H. J. Phys. Chem. A 2009, 113, 14664. https://doi.org/10.1021/jp9044379
  39. (g) Shao, Y.; Yao, L.; Mao, Y. C.; Zhong, J. J. Chem. Phys. Lett. 2010, 501, 134. https://doi.org/10.1016/j.cplett.2010.10.041
  40. (h) Gu, Zh, L.; Yao, L.; Shao, Y.; Yung, K.; Zhong, J. J. J. Theor. Compu. Chem. 2010, 9, 813. https://doi.org/10.1142/S0219633610006006
  41. (i) Gu, L. Z.; Yao, L.; Shao, Y.; Liu, W.; Gao, H. Mol. Phys. 2011, 1.
  42. (j) Li, Q.; Xia, W. W.; Yao, L.; Shao, Y. Can. J. Chem. 2012, 90, 186.
  43. (k) Li, Q.; Yao, L.; Shao, Y. Chem. 2012, 2, 1-13.
  44. (a) Forst, W.; Prasil, Z. J. Chem. Phys. 1970, 53, 3065. https://doi.org/10.1063/1.1674450
  45. (b) Forst, W. Chem. Rev. 1971, 71, 339. https://doi.org/10.1021/cr60272a001
  46. (c) Forst, W. Theory of Unimolecular Reactions; Academic Press: New York, 1973.
  47. Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics: Theoryand Experiments; Oxford University Press: New York, 1996.
  48. Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell: Oxford, 1990.
  49. Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; Wiley-Interscience Publication: New York, 1980; Chapter 5.
  50. LeBlanc, O. H., Jr.; Laurie, V. W.; Guinn, W. D. J. Chem. Phys. 1960, 33, 598. https://doi.org/10.1063/1.1731191
  51. Herzberg, G. Electronic Spectra and Electronic Structure of Polyatomic Molecules; Van Nostrand Reinhold: New York, 1966.
  52. Huber, K. P.; Herzberg, G., IV Constants of Diatomic Molecules; Van Nostrand Reinhold Co.: New York, 1979.
  53. Qiong Luo, Qian Shu Li, Direct ab initio Dynamics Study of the Unimolecular Reaction of $CH_2FO$; School of Science, Beijing Institute of Technology: Beijing 100081, P. R. China.