DOI QR코드

DOI QR Code

Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM

  • Isonguyo, Cecilia N. (Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria) ;
  • Okon, Ituen B. (Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria) ;
  • Ikot, Akpan N. (Theoretical Physics Group, Department of Physics, University of Port Harcourt) ;
  • Hassanabadi, Hassan (Department of Basic Sciences, Shahrood Branch, Islamic Azad University)
  • Received : 2014.04.24
  • Accepted : 2014.08.06
  • Published : 2014.12.20

Abstract

We present the solution of Klein Gordon equation with new generalized Morse-like potential using SUSYQM formalism. We obtained approximately the energy eigenvalues and the corresponding wave function in a closed form for any arbitrary l state. We computed the numerical results for some selected diatomic molecules.

Keywords

References

  1. Yi, L. Z.; Diao, Y. F.; Liu, J. Y.; Jia, C. S. Phys. Lett. 2004, 33, 212.
  2. Zang, X. C.; Liu, Q. W.; Jia, C. S.; Wang, L. Z. Phys. Lett. A 2005, 340, 59. https://doi.org/10.1016/j.physleta.2005.04.011
  3. Qiang, W. C.; Dong, S. H. EPL 2010, 89, 10003. https://doi.org/10.1209/0295-5075/89/10003
  4. Serrano, F. A.; Gu, X. Y.; Dong, S. H. J. Math. Phys. 2010, 51, 082103. https://doi.org/10.1063/1.3466802
  5. Lucha, W.; Schoberl, F. F. Int. J. Mod. Phys. A 2002, 17, 2233. https://doi.org/10.1142/S0217751X0200976X
  6. Antia, A. D.; Ikot, A. N.; Akpan, I. O.; Owoga, O. A. Indian J. Phys. 2013, 87, 155. https://doi.org/10.1007/s12648-012-0210-3
  7. Alhaidari, A. D.; Bahlouli, H.; Hasan, A. L. Lett. Phys. A 2006, 349, 87. https://doi.org/10.1016/j.physleta.2005.09.008
  8. Ikot, A. N. Chin. Phys. Lett. 2012, 29, 6.
  9. Baraket, T. Int. J. Mod. Phys. A 2006, 21, 4127. https://doi.org/10.1142/S0217751X06030916
  10. Nikiforov, A. F., 1988.
  11. Setare, M. R.; Nazari, Z. Acta Polonica B 2009, 40(10), 2809.
  12. Taskin, F. Int. J. Theor. Phys. 2009, 48, 1142. https://doi.org/10.1007/s10773-008-9887-7
  13. Manning, M. F.; Rosen, N. Phys. Rev. 1933, 44, 953.
  14. Saad, N. Phys. Scr. 2007, 76, 623. https://doi.org/10.1088/0031-8949/76/6/005
  15. Ikot, A. N.; Akpabio, L. E.; Uwah, E. J. EJTP 2011, 8(25), 225.
  16. Jia, C. S.; Gao, P.; Peng, X. L. J. Phys. A. Math. Gen. 2006, 39, 7737. https://doi.org/10.1088/0305-4470/39/24/010
  17. Guo, J. Y.; Sheng, Z. Q. Phys. Lett. A 2005, 388, 90.
  18. Ikot, A. N.; Akpan, I. O. Chin. Phys. Lett. 2012, 29, 090302. https://doi.org/10.1088/0256-307X/29/9/090302
  19. Alhaidar, A. D. Found. Phys. 2010, 40, 10885.
  20. Poshl, G.; Teller, E. Z. Phys. 1933, 83, 623.
  21. Arda, A.; Server, R.; Tezcan, C. Phys. Scr. 2009, 79, 5006.
  22. Arda, A.; Server, R. Int. J. Theor. Phys. 2009, 48, 945. https://doi.org/10.1007/s10773-008-9867-y
  23. Berkdemir, C. Nucl. Phys. A 2006, 770, 32. https://doi.org/10.1016/j.nuclphysa.2006.03.001
  24. Jia, C. S.; Chen, T.; Yi, L. Z.; Lin, S. R. J. Math. Chem. 2013, 51, 2165. https://doi.org/10.1007/s10910-013-0204-1
  25. Zarezadeh, M.; Tavassoly, M. K. Chin. Phys. C 2013, 37, 4.
  26. Erkol, H.; Demialp, E. Molecular Phys. 2009, 107, 19. https://doi.org/10.1080/00268970802680497
  27. Ikot, A. N.; Maghsoodi, E.; Zarrinkamar, S.; Hassanabadi, H. J. Theor. Phys. 2013, 7, 53. https://doi.org/10.1186/2251-7235-7-53
  28. Yazarloo, B. H.; Hassanabadi, H.; Rahimovi, S. Euro. Phys. J. Plus 2012, 127, 51. https://doi.org/10.1140/epjp/i2012-12051-9
  29. Greene, R. L.; Aldrich, C. Phys. Rev. A 1976, 14, 2363. https://doi.org/10.1103/PhysRevA.14.2363
  30. Kunc, J. A.; Gordillo-Vazquez, F. J. J. Phys. Chem. A 1997, 101, 1595. https://doi.org/10.1021/jp962817d
  31. Jia, C. S.; Chen, T.; Cui, L. G. Phys. Lett. A 2009, 373, 1621. https://doi.org/10.1016/j.physleta.2009.03.006
  32. Jia, C. S.; Diao, Y. F.; Yi, L. Z.; Chen, T. Int. J. Mod. Phys. A 2009, 24, 4519. https://doi.org/10.1142/S0217751X09045510
  33. Chen, X. Y.; Chen, T.; Jia, C. S. Euro. J. Phys. Plus 2014, 129, 75. https://doi.org/10.1140/epjp/i2014-14075-5
  34. Ikot, A. N.; Maghsoodi, E.; Ibanga, E. J.; Zarrinkamar, S.; Hassanabadi, H. Chin. Phys. B 2013, 22, 120302. https://doi.org/10.1088/1674-1056/22/12/120302
  35. Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267. https://doi.org/10.1016/0370-1573(94)00080-M

Cited by

  1. Klein-Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions vol.131, pp.12, 2016, https://doi.org/10.1140/epjp/i2016-16419-5
  2. Bound and Scattering State of Position Dependent Mass Klein–Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential vol.57, pp.9, 2016, https://doi.org/10.1007/s00601-016-1111-3
  3. Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method vol.2017, pp.1687-7365, 2017, https://doi.org/10.1155/2017/9671816
  4. A novel SUSY energy bound-states treatment of the Klein-Gordon equation with PT-symmetric and q-deformed parameter Hulthén potential vol.121, pp.1, 2014, https://doi.org/10.1209/0295-5075/121/10005
  5. Effect of dissociation energy on Shannon and Rényi entropies vol.4, pp.1, 2014, https://doi.org/10.1016/j.kijoms.2017.12.004
  6. Any l-state solutions of the Schrodinger equation interacting with Hellmann-Kratzer potential model vol.94, pp.2, 2014, https://doi.org/10.1007/s12648-019-01467-x
  7. The Improved Deformed Exponential‐type Potential Energy Model for N 2 , NI , SCI , and RBH Diatomic Molecules vol.41, pp.6, 2020, https://doi.org/10.1002/bkcs.12039
  8. Fisher and Shannon information entropies for a noncentral inversely quadratic plus exponential Mie-type potential vol.72, pp.6, 2014, https://doi.org/10.1088/1572-9494/ab7ec9
  9. Bound and scattering states solutions of the Klein-Gordon equation with generalized Mobius square potential in D-dimensions vol.75, pp.2, 2014, https://doi.org/10.1140/epjd/s10053-021-00059-x
  10. Bound state solutions of the generalized shifted Hulthén potential vol.95, pp.3, 2014, https://doi.org/10.1007/s12648-019-01650-0
  11. Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential vol.95, pp.3, 2021, https://doi.org/10.1007/s12648-019-01670-w
  12. Bound and scattering states of the Klein-Gordon equation for shifted Tietz-Wei potential with applications to diatomic molecules vol.119, pp.11, 2014, https://doi.org/10.1080/00268976.2021.1922773
  13. Bound and scattering states solutions of the Klein-Gordon equation with the attractive radial potential in higher dimensions vol.36, pp.32, 2014, https://doi.org/10.1142/s0217732321502308