DOI QR코드

DOI QR Code

화이트 스페이스 활용을 위한 무선환경 인지 기술 및 활성화 방안

CR Technology and Activation Plan for White Space Utilization

  • Yoo, Sung-Jin (Electronics and Telecommunications Research Institute) ;
  • Kang, Kyu-Min (Electronics and Telecommunications Research Institute) ;
  • Jung, Hoiyoon (Electronics and Telecommunications Research Institute) ;
  • Park, SeungKeun (Electronics and Telecommunications Research Institute)
  • 투고 : 2014.11.03
  • 심사 : 2014.11.18
  • 발행 : 2014.11.28

초록

주파수 공유대역에서 가용 주파수 자원을 인지하여 효과적으로 공유하고 활용하기 위해서 데이터베이스 접속을 통한 무선환경 인지 기술과 광대역 스펙트럼 센싱을 통한 무선환경 인지 기술 개발이 필요하다. 본 논문에서는 IETF (Internet Engineering Task Force) PAWS (Protocol to Access White Space database) 표준 프로토콜 기반으로 개발한 TVWS (TV White Space) 데이터베이스 접속 프로토콜 구현 기술을 제시하고, TVWS에 적합한 MWC (Modulated Wideband Converter) 구조를 이용한 광대역 압축 스펙트럼 센싱 기술을 제안한다. 제안된 TVWS 데이터베이스 접속 프로토콜 구현 기술은 TVBD (TV Band Device)와 TVWS 데이터베이스에 탑재되어 실환경 테스트를 통해 안정적으로 동작함을 보인다. 본 연구에서 제안된 광대역 압축 스펙트럼 센싱 방식은 잡음 분산 추정 오차에 무관하게 일정 수준의 오경보 확률을 유지할 뿐만 아니라 95% 이상의 높은 검출 성능을 보인다. 또한, 본 논문에서는 미국 FCC와 유럽 ETSI에서 최근 마련한 TVWS 데이터베이스 정책을 분석하고, IETF에서 현재 마련 중인 화이트 스페이스 데이터베이스 접속 프로토콜에 관해 기술한다.

Cognitive radio (CR) technology based on geo-location database access approach and/or wideband spectrum sensing approach is absolutely vital in order to recognize available frequency bands in white spaces (WSs), and efficiently utilize shared spectrums. This paper presents a new structure for the TVWS database access protocol implementation based on Internet Engineering Task Force (IETF) Protocol to Access WS database (PAWS). A wideband compressive spectrum sensing (WCSS) scheme using a modulated wideband converter is also proposed for the TVWS utilization. The developed database access protocol technology which is adopted in both the TV band device (TVBD) and the TVWS database operates well in the TV frequency bands. The proposed WCSS shows a stable performance in false alarm probability irrespective of noise variance estimation error as well as provides signal detection probabilities greater than 95%. This paper also investigates Federal Communications Commision (FCC) regulatory requirements of TVWS database as well as European Telecommunications Standards Institute (ETSI) policy related to TVWS database. A standardized protocol to achieve interoperability among multiple TVBDs and TVWS databases, which is currently prepared in the IETF, is discussed.

키워드

참고문헌

  1. PCAST, Traditional practice of clearing government-held spectrum of federal users and auctioning it for commercial use is not sustainable, PCAST final report, Jul. 2012.
  2. FCC, "Further Notice of Proposed Rulemaking," FCC 14-49, Apr. 2014.
  3. OFCOM, "The future role of spectrum sharing for mobile and wireless data services: Licensed sharing, Wi-Fi, and dynamic spectrum access," Statement, Apr. 2014.
  4. S. Haykin, "Cognitive radio: Brainempowered wireless communications," IEEE J. Sel. Area. Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
  5. K. G. Shin, H. Kim, A. W. Min, and A. Kumar, "Cognitive radios for dynamic spectrum access: From concept to reality," IEEE Wirel. Commun., vol. 17, no. 6, pp. 64-74, Dec. 2010. https://doi.org/10.1109/MWC.2010.5675780
  6. W. Ni and I. B. Collings, "A new adaptive small-cell architecture," IEEE J. Sel. Area. Commun., vol. 31, no. 5, pp. 829-839, May 2013. https://doi.org/10.1109/JSAC.2013.130502
  7. H. Elsawy, E. Hossain, and D. I. Kim, "Hetnets with cognitive small cells: User offloading and distributed channel access techniques," IEEE Commun., Mag., vol. 51, no. 6, pp. 28-36, Jun. 2013.
  8. J. S. Park, K. K. Kang, S. Y. Lee, S. W. Baek, and S. J. Yoo, "Optimal price and auction period decision method based on auction game theory for spectrum allocation in cognitive radio networks," J. KICS, vol. 38A, no. 11, pp. 944-954, Nov. 2013. https://doi.org/10.7840/kics.2013.38A.11.944
  9. K. H. Lee, J. K. Choi, and S. J. Yoo, "The coexistence solution using transmission schedule and user's position information in cognitive radio networks," J. KICS, vol. 37B, no. 3, pp. 189-203, Mar. 2012.
  10. K. M. Kang, J. C. Park, S. I. Cho, B. J. Jeong, Y. J. Kim, H. J. Lim, and G. H. Im, "Deployment and coverage of cognitive radio networks in TV white space," IEEE Commun. Mag., vol. 50, no. 12, pp. 88-94, Dec. 2012.
  11. J. van de Beek, J. Riihijarvi, A. Achtzehn, and P. Mahonen, "TV white space in Europe," IEEE Trans. Mob. Comput., vol. 11, no. 2, pp. 178-188, Feb. 2012. https://doi.org/10.1109/TMC.2011.203
  12. D. W. Yun, H. M. Chang, and W. C. Lee, "A study on experiment of transmission power assignment for indoor TVWS wireless communication system," J. KICS, vol. 38, no. 10, pp. 851-860, Oct. 2013.
  13. FCC, "Third memorandum opinion and order, in the matter of unlicensed operation in the TV broadcast bands, additional spectrum for unlicensed devices below 900 MHz and in the 3 GHz band," FCC 12-36, Apr. 2012.
  14. ETSI, "White space devices (WSD); wireless access systems operating in the 470 MHz to 790 MHz TV broadcast band; harmonized EN covering the essential requirements of article 3.2 of the R&TTE directive," ETSI EN 301 598 v1.1.1, Apr. 2014.
  15. ECC, Technical and operational requirements for the operation of white space devices under geo-location approach, ECC Report 186, Jan. 2013.
  16. M. Mishali and Y. C. Eldar, "From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals," IEEE J. Sel. Topics Signal Process., vol. 4, pp. 375-391, Apr. 2010. https://doi.org/10.1109/JSTSP.2010.2042414
  17. R. Choe and Y. S. Byun, "Or-rule based cooperative spectrum sensing scheme considering reporting error in cognitive radio networks," J. KICS, vol. 39A, no. 1, pp. 19-27, Jan. 2014. https://doi.org/10.7840/kics.2014.39A.1.19
  18. V. Petrini and H. R. Karimi, "TV white space databases: Algorithms for the calculation of maximum permitted radiated power levels," in Proc. IEEE Int. Symp. Dynamic Spectrum Access Netw. (DYSPAN), pp. 552-560, Oct. 2012.
  19. D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  20. E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  21. H. Jung, K. Kim, and Y. Shin, "Cooperative Bayesian compressed spectrum sensing for correlated signals in cognitive radio networks," J. KICS, vol. 38, no. 9, pp. 765-774, Sept. 2013.
  22. IETF, "Protocol to access white-space (PAWS) database draft-ietf-paws-protocol -19," Draft standard, Sept. 2014.
  23. M. Mishali and Y. C. Eldar, "Blind multiband signal reconstruction: Compressed sensing for analog signals," IEEE Trans. Sig. Process., vol. 57, no. 3, pp. 993-1009, Mar. 2009. https://doi.org/10.1109/TSP.2009.2012791