DOI QR코드

DOI QR Code

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung (Department of Biomaterial Control, Dongeui University) ;
  • Park, Sook-Young (Korean Lichen Research Institute, Sunchon National University) ;
  • Kim, Hyejeong (Department of Biomaterial Control, Dongeui University) ;
  • Kim, Dongyoung (Department of Biomaterial Control, Dongeui University) ;
  • Lee, Seon-Woo (Department of Applied Biology, Dong-A University) ;
  • Kim, Heung Tae (Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Lee, Jong-Hwan (Department of Biomaterial Control, Dongeui University) ;
  • Choi, Woobong (Department of Biomaterial Control, Dongeui University)
  • Received : 2014.08.18
  • Accepted : 2014.09.28
  • Published : 2014.12.01

Abstract

Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Keywords

References

  1. Adaskaveg, J. E. and Hartin, R. J. 1997. Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87:979-987. https://doi.org/10.1094/PHYTO.1997.87.9.979
  2. Baroncelli, R., Sreenivasaprasad, S., Sukno, S. A., Thon, M. R. and Holub, E. 2014. Draft genome sequence of Colletotrichum acutatum Sensu Lato (Colletotrichum fioriniae). Genome Announc. 2:e00112-00114.
  3. Becher, R., Weihmann, F., Deising, H. B. and Wirsel, S. G. 2011. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC genomics 12:52. https://doi.org/10.1186/1471-2164-12-52
  4. Fernandes, A. S., Goncalves, A. P., Castro, A., Lopes, T. A., Gardner, R., Glass, N. L. and Videira, A. 2011. Modulation of fungal sensitivity to staurosporine by targeting proteins identified by transcriptional profiling. Fungal Genet. Biol. 48:1130-1138. https://doi.org/10.1016/j.fgb.2011.09.004
  5. Fleissner, A., Sopalla, C. and Weltring, K. M. 2002. An ATPbinding cassette multidrug-resistance transporter is necessary for tolerance of Gibberella pulicaris to phytoalexins and virulence on potato tubers. Mol. Plant-Microbe Interact. 15:102-108. https://doi.org/10.1094/MPMI.2002.15.2.102
  6. Freeman, S., Katan, T. and Sahabi, E. 1998. Characterization of Colletotrichum species responsible for anthracnose disease of various fruits. Plant Dis. 82:596-605. https://doi.org/10.1094/PDIS.1998.82.6.596
  7. Gupta, A. and Chattoo, B. B. 2008. Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiol. Lett. 278:22-28. https://doi.org/10.1111/j.1574-6968.2007.00937.x
  8. Harp, T., Kuhn, P., Roberts, P. D. and Pernezny, K. 2014. Management and corss-infectivity potential of Colletotrichum acutatum causing anthracnose on bell pepper in Florida. Phytoparasitica 42:31-39. https://doi.org/10.1007/s12600-013-0334-9
  9. Harp, T. L., Rernezny, K., Ivey, M. L. L., Miller, S. A. and Kuhn, P. J. 2008. The etiology of recent pepeer anthracnose outbreaks in Florida. Crop Prot. 27:1380-1384. https://doi.org/10.1016/j.cropro.2008.05.006
  10. Hyde, S. C., Emsley, P., Hartshorn, M. J., Mimmack, M. M., Gileadi, U., Pearce, S. R., Gallagher, M. P., Gill, D. R., Hubbard, R. E. and Higgins, C. F. 1990. Structural model of ATPbinding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362-365. https://doi.org/10.1038/346362a0
  11. Kim, C. H. and Park, K. S. 1998. A predictive model of disease progressin of red-pepper anthracnose. Korean J. Plant Pathol. 4:325-331.
  12. Kim, J.-H., Lee, J.-H. and Cho, W. 2013. Identification of genes expressed during conidial germination of the pepper anthracnose pathogen, Colletotrichum acutatum. J. Life Sci. 23:8-14. https://doi.org/10.5352/JLS.2013.23.1.8
  13. Kim, J. T., Park, S.-Y., Choi, W., Lee, Y.-H. and Kim, H. T. 2008. Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol. J. 24:7-23. https://doi.org/10.5423/PPJ.2008.24.1.017
  14. Kim, Y., Park, S. Y., Kim, D., Choi, J., Lee, Y. H., Lee, J. H. and Choi, W. 2013. Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics 101:354-361. https://doi.org/10.1016/j.ygeno.2013.04.003
  15. Lewis-Ivey, M. L., Nava-Diaz, C. and Miller, S. A. 2004. Identification and management of Colletotrichum acutatum on immature bell peppers. Plant Dis. 88:1198-1204. https://doi.org/10.1094/PDIS.2004.88.11.1198
  16. Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  17. Pao, S. S., Paulsen, I. T. and Saier, M. H., Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1-34.
  18. Paredes, B. L. S. G. and Munoz, F. R. 2002. Effect of different fungicides in the control of Colletotrichum acutatum, causal agent of anthracnose crown rot in strawberry plants. Crop Prot. 21:11-15. https://doi.org/10.1016/S0261-2194(01)00054-0
  19. Park, K. S. and Kim, C. H. 1992. Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Kor. J. Plant Pathol. 8:61-69.
  20. Park, S. Y., Choi, J., Lim, S. E., Lee, G. W., Park, J., Kim, Y., Kong, S., Kim, S. R., Rho, H. S., Jeon, J., Chi, M. H., Kim, S,. Khang, C. H., Kang, S. and Lee, Y. H. 2013. Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog. 9:e1003350. https://doi.org/10.1371/journal.ppat.1003350
  21. Peres, N. A., Timmer, L. W., Adaskaveg, J. E. and Correll, J. C. 2005. Lifestyle of Colletotrichum acutatum. Plant Dis. 89:784-796. https://doi.org/10.1094/PD-89-0784
  22. Peres, N. A. R., Souza, N. L., Zitko, S. E. and Timmer, L. W. 2002. Activity of benomyl of control of postbloom fruit drop of citrus caused by Colletotrichum acutatum. Plant Dis. 86:620-624. https://doi.org/10.1094/PDIS.2002.86.6.620
  23. Prestridge, D. S. 1995. Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249:923-932. https://doi.org/10.1006/jmbi.1995.0349
  24. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  25. Schneider, E. and Hunke, S. 1998. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol. Rev. 22:1-20. https://doi.org/10.1111/j.1574-6976.1998.tb00358.x
  26. Schoonbeek, H., Del Sorbo, G. and De Waard, M. A. 2001. The ABC transporter BcatrB affects the sensitivity of Botrytis cinerea to the phytoalexin resveratrol and the fungicide fenpiclonil. Mol. Plant-Microbe Interact. 14:562-571. https://doi.org/10.1094/MPMI.2001.14.4.562
  27. Shivas, R. G. and Tan, Y. P. 2009. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae cob. et stat. nov. and C. simmondsii sp. nov. Fungal Diversity 39:111-122.
  28. Stergiopoulos, I., Zwiers, L. H. and De Waard, M. A. 2003. The ABC transporter MgAtr4 is a virulence factor of Mycosphaerella graminicola that affects colonization of substomatal cavities in wheat leaves. Mol. Plant-Microbe Interact. 16:689-698. https://doi.org/10.1094/MPMI.2003.16.8.689
  29. Sutton, B. C. 1992. The genus Glomerella and its anamorph Colletotrichum. Wallingford, U. K.: CAB International.
  30. Talbot, N. J., McCafferty, H. R. K., Ma, M., Koore, K. and Hamer, J. E. 1997. Nitrogen starvation of the rice blast fungus Magnaporthe oryzae may act as an environmental cue for disease symptom expression. Physiol. Mol. Plant Pathol. 50:179-195. https://doi.org/10.1006/pmpp.1997.0081
  31. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2002. Genetic and morphological characterization of Colletotrichum acutatum causing anthracnose of lupins. Phytopathology 92:986-996. https://doi.org/10.1094/PHYTO.2002.92.9.986
  32. Talhinhas, P., Sreenivasaprasad, S., Neves-Martins, J. and Oliveira, H. 2005. Molecular and phenotypic analyses reveal association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 71:2987-2998. https://doi.org/10.1128/AEM.71.6.2987-2998.2005
  33. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  34. Urban, M., Bhargava, T. and Hamer, J. E. 1999. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J. 18:512-521. https://doi.org/10.1093/emboj/18.3.512
  35. Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945-951.
  36. Wedge, D. E., Smith, B. J., Quebedeaux, J. P. and Constantin, R. 2007. Fungicide management strategies for control of strawberry fruit rot disease in Louisiana and Mississippi. Crop Prot. 26:1449-1458. https://doi.org/10.1016/j.cropro.2006.12.007
  37. White, T. C., Marr, K. A. and Bowden, R. A. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol. Rev. 11:382-402.

Cited by

  1. Lysimachia foenum-graecum Herba Extract, a Novel Biopesticide, Inhibits ABC Transporter Genes and Mycelial Growth of Magnaporthe oryzae vol.32, pp.1, 2016, https://doi.org/10.5423/PPJ.OA.08.2015.0157
  2. Anthracnose Caused by Colletotrichum acutatum in Robinia pseudoacacia vol.22, pp.2, 2016, https://doi.org/10.5423/RPD.2016.22.2.127