DOI QR코드

DOI QR Code

DLC 코팅에 의한 사판식 피스톤 펌프의 저속 영역 동력 손실 개선

Performance Improvement of a Swash Plate Type Piston Pump in the Low-Speed Range by a DLC Coating

  • Hong, Y.S. (Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Kim, J.H. (Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University) ;
  • Lee, S.L. (Aerospace & Mechanical Engineering, Graduate School, Korea Aerospace University)
  • 투고 : 2014.08.18
  • 심사 : 2014.10.24
  • 발행 : 2014.12.01

초록

This paper details application of a DLC(Diamond Like Carbon)-coating to the swash plate and the ball joint of pistons that make sliding contact with the piston shoes of an axial piston pump. This process, aimed to reduce the frictional and leakage power losses of the hydrostatic piston shoe bearings at the low speed range. At lower speeds than 100rpm, the positive effects of the DLC-coating on the power loss reduction of the hydrostatic piston shoe bearings could be confirmed. These effects resulted in little improvement in volumetric efficiency of the test pump, but the mechanical efficiency could be raised by up to 5% at 100rpm; here, the DLC-coated swash plate played a more dominant role than the DLC-coated ball joint.

키워드

참고문헌

  1. S. Y. Lee, B. Kim, S. D. Kim, G. Kim and Y. S. Hong," Effect of Si Doping on the Wear Properties of CrN Coatings Synthesized by Unbalanced Magnetron Sputtering", Thin Soild Films, Vol. 506-507, pp.192-196, 2006. https://doi.org/10.1016/j.tsf.2005.08.027
  2. Y. S. Hong and S. Y. Lee, "A Comparative Study of Cr-X-N(X=Zr, Si) Coatings for the Improvement of the Low-speed Torque Efficiency of a Hydraulic Piston Pump", Metals and Materials Int. Vol. 14, No.1, pp.33-40, 2008. https://doi.org/10.3365/met.mat.2008.02.033
  3. H. Murrenhoff, U. Piepenstock and T. Kohmascher, "Analyzing Losses in Hydrostatic Drives", Proc. of the 7th JFPS International Symposium on Fluid Power, pp.103-108, 2008.
  4. E. Koc and C. J. Hooke, "Investigation into the Effects of Orifice Size, Offset and Overclamp Ratio on the Lubrication of Slipper Bearings", Tribology International, Vol. 29, No. 4, pp.299-305, 1996. https://doi.org/10.1016/0301-679X(95)00044-5
  5. R. E. Johnson and N. D. Manring, "Translating Circular Thrust Bearings", J. Fluid Mech., Vol. 530, pp.197-212, 2005. https://doi.org/10.1017/S0022112005003782
  6. A. Schenk and M. Ivantysynova, "An Investigation of the Impact of Elastohydrodynamic Deformation on Power Loss in the Slipper Swash Plate Interface", Proc. 8th JFPS Int. Symposium on Fluid Power, pp.228-234, 2011.
  7. I.S. Cho, "Theoretical Analysis of the Slipper Hydrostatic Bearings Shape in the Swash Plate Type Axial Piston Pump, J. Korean Soc. Fluid Power Constr. Equip., Vol.10, No.1. pp.14-20, 2013.
  8. O. Boinghoff, "Untersuchen zum Reibungsverhalten der Gleitschuhe in Schragscheiben-Axial-kolbenmascinen", VDI-Forschungsheft, VDI-Verlag, Dusseldorf, Vol. 584, 1977.
  9. S. Kobayashi, M. Hirose, J. Hatsue, and M. Ikeya, "Friction Characteristics of a Ball Joint in the Swash Plate Type Axial Piston Motor", Proc. 8th International Symposium on Fluid Power, pp.565-592, 1987.
  10. Y. Inaguma, "Reduction of Friction Torque in Vane Pumps by Using Physical Vapour Deposition-coated Vane", Proc. IMechE Vol.224 Part C: J. Mechanical Engineering Science, pp.2449-2458, 2010. https://doi.org/10.1243/09544062JMES2120
  11. M. Kano, "DLC Coating Technology Applied to Sliding Parts of Automotive Engine", New Diamond & Frontier Carbon Technology, Vol. 16, No.4, pp.201-210, 2006.
  12. Creating Nano Technologies Inc., www.creating-nanotech.com.
  13. Y. S. Hong, Y. C. Kwon, C. H. Kim, S. L. Lee, B. K. Kim, J. S. Moon and J. H. Kim, "Performance Improvement of the Hydrostatic Piston Shoe Bearing of an EHA-Piston Pump under Boundary Friction Conditions", J. Korean Soc. Fluid Power Constr. Equip., Vol.11, No.2. pp.30-35, 2014. https://doi.org/10.7839/ksfc.2014.11.2.030

피인용 문헌

  1. 크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석 vol.15, pp.1, 2014, https://doi.org/10.7839/ksfc.2018.15.1.010
  2. 소형 외접기어펌프를 사용하는 EHA의 시스템 효율 분석 vol.16, pp.2, 2014, https://doi.org/10.7839/ksfc.2019.16.2.015
  3. Review of cylinder block/valve plate interface in axial piston pumps: Theoretical models, experimental investigations, and optimal design vol.34, pp.1, 2014, https://doi.org/10.1016/j.cja.2020.09.030