DOI QR코드

DOI QR Code

지역적 밝기 변화에 강인한 물체 인식을 위한 지역 서술자와 엔트로피 기반 유사도 척도에 관한 연구

A study on a local descriptor and entropy-based similarity measure for object recognition system being robust to local illumination change

  • Yang, Jeong-Eun (Department of Control and Instrumental Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Yang, Seung-Yong (Department of Control and Instrumental Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Hong, Seok-Keun (Technology Institute, GMT Engineering) ;
  • Cho, Seok-Je (Division of Information Technology Engineering, Korea Maritime and Ocean University)
  • 투고 : 2014.09.02
  • 심사 : 2014.10.28
  • 발행 : 2014.11.30

초록

본 논문에서는 지역적인 밝기 변화에 강인한 지역 서술자와 유사도 척도를 제안한다. 제안한 지역 서술자는 Haar 웨이블렛 필터를 이용하여 특징점과 주변의 주파수 특성을 포함한 지역 서술자를 정의하여 지역적으로 불균일한 조명의 영향에도 특징점을 명확히 서술할 수 있다. 제안한 유사도 척도는 기존의 엔트로피 기반의 유사도에 지역 서술자로 계산한 유사도를 결합한 형태이다. 이는 지역적인 조명의 변화가 발생한 영역의 유사도를 정확히 반영할 수 있다. 실험을 통해 제안한 방법의 성능을 검증하였다.

In this paper, we propose a local descriptor and a similarity measure that is robust to radiometic variations. The proposed local descriptor is made up Haar wavelet filter and it can contain frequency informations about the feature point and its surrounding pixels in fixed region, and it is able to describe feature point clearly under ununiform illumination condition. And a proposed similarity measure is combined with conventional entropy-based similarity and another similarities that is generated by local descriptor. It can reflect similarities between image regions accurately under radiometic illumination variations. We validate with experimental results on some images and we confirm that the proposed algorithm is more superior than conventional algorithms.

키워드

참고문헌

  1. X. Han, Y. Chen, and X. Ruan, "Multilinear supervised neighborhood embedding of a local descriptor tensor for scene/object recognition," IEEE Transactions on Image Processing, vol. 21, no. 3. pp. 1314-1326, 2012. https://doi.org/10.1109/TIP.2011.2168417
  2. T. Engin, L. Vincent, and F. Pascal, "A fast local descriptor for dense matching," IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
  3. M. Krystian and S. Cordelia, "A performance evaluation of local descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 27, no. 10, pp. 1615-1630, 2005. https://doi.org/10.1109/TPAMI.2005.188
  4. K. Mikolajczyk and C. Schmid, "A performance evaluation of local descriptors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1615-1630, 2005. https://doi.org/10.1109/TPAMI.2005.188
  5. D. G. Lowe, "Distinctive image features from scale invariant keypoints," International Journal of Computer Vision, vol. 20, no. 2, pp. 91-110, 2004.
  6. S. P. Nasholm, R. Hansen, S. E. Johansec, and B. Angelsen, "Transmit beams adapted to reverberation noise suppession using dual-frequency SURF imaging," IEEE Transactions on Ultrasonics, Ferroelectircs, and Frequency Control, vol. 56, no. 10, pp. 2124-2133, 2009. https://doi.org/10.1109/TUFFC.2009.1295
  7. T. Engin, L. Vincent, and F. Pascal, "DAISY:An efficient dense descriptor applied to wide-baseline stereo," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 5, pp. 815-830, 2010. https://doi.org/10.1109/TPAMI.2009.77
  8. Y. Heo, K. Lee, and S. Lee, "Illumination and camera invariant stereo matching," IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8, 2008.
  9. U. Raghavendra, "Entropy based Log chromaticity projection for real-time stereo matching," 2nd International Conference on Communication, Computing and amp; Security, vol. 6, pp. 223-230, 2012.
  10. P. Viola and W. Wells, "Alignment by maximization of mutual information," IEEE Proceeding in Sixth IEEE Inteligent Conference of Computer Vision, vol. 24, no. 2, pp. 137-154, 1997.
  11. J. Kim, V. Kolmogorov, and R. Zabih, "Visual correspondence using energy minimization and mutual information," IEEE Proceeding in Intelligent Conference of Computer Vision, vol. 2, pp. 1033-1040, 2003.
  12. M. Thomas, A. Thomas, and T. M. Cover, Elements of Information Theory, John Wiley & Sons, 2005.
  13. G. Ling and C. Wang, "An image registration algorithm based on SIFT and CCH," 2010 2nd International Conference on Computer Engineering and Technology, vol. 7, pp. 463-467, 2010.
  14. M. Turan and H. K. Ekenel, "Shape-based facial expression classification using angular radial transform," 2013 21st Signal Processing and Communications Applications Conference, pp. 1-4, 2013.