DOI QR코드

DOI QR Code

H2S Gas Sensing Properties of CuO Nanotubes

  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College) ;
  • Park, Sunghoon (Department of Materials Science & Engineering, Inha University)
  • Received : 2014.11.11
  • Accepted : 2014.11.26
  • Published : 2014.11.30

Abstract

CuO nanotubes are synthesized using $TeO_2$ nanorod templates for application to $H_2S$ gas sensors. $TeO_2$ nanorod templates were synthesized by using the VS method through thermal evaporation. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the synthesized nanotubes were monoclinic-structured polycrystalline CuO with diameter and wall thickness of approximately 100~300 nm and 5~10 nm, respectively. The CuO nanotube sensor showed responses of 136~325% for the $H_2S$ concentration of 0.1~5 ppm at room temperature. These response values are approximately twice as high as that of the CuO nanowire sensor for the same concentrations of $H_2S$ gas. Along with the investigation of the performance of the sensors, the mechanisms of $H_2S$ gas sensing of the CuO nanotubes are also discussed in this study.

Keywords

References

  1. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006). https://doi.org/10.1021/cm052256f
  2. J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). https://doi.org/10.1021/jp805919t
  3. J. Chao, X. Xu, H. Huang, Z. Liu, B. Liang, X. Wang, S. Ran, D. Chen, and G. Shen, Cryst. Eng. Comm. 14, 6654 (2012). https://doi.org/10.1039/c2ce25089f
  4. N. Singh, R.K. Gupta, and P.S. Lee, ACS Appl. Mater. Interfaces, 3, 2246 (2011). https://doi.org/10.1021/am101259t
  5. S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, and Z.L. Wang, Adv. Mater. 25, 3701 (2013). https://doi.org/10.1002/adma.201301262
  6. D. Li, J. Hu, R. Wu, and J.G. Lu, Nanotechnol. 21, 485502 (2010). https://doi.org/10.1088/0957-4484/21/48/485502
  7. E. Comini, Metal oxide nano-crystals for gas sensing, Anal. Chim. Acta 568, 28 (2006). https://doi.org/10.1016/j.aca.2005.10.069
  8. Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, and J. Yang, J. Phys. Chem. C 116, 11994 (2012). https://doi.org/10.1021/jp212029n
  9. N. Barsan, C. Simion, T. Heine, S. Pokhrel, and U. Weimar, J. Electroceram. 25, 11 (2010). https://doi.org/10.1007/s10832-009-9583-x
  10. L. Xu, R. Xing, J. Song, W. Xu, and H. Song, J. Mater. Chem. C 1, 2174 (2013). https://doi.org/10.1039/c3tc00689a
  11. J. Fu, C. Zhao, J. Zhang, Y. Peng, and E. Xie, ACS Appl. Mater. Interfaces 5, 7410 (2013). https://doi.org/10.1021/am4017347
  12. H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sens. Actuators B 161, 594 (2012). https://doi.org/10.1016/j.snb.2011.11.006
  13. S. An, S. Park, H. Ko, and C. Lee, Ceram. Int. 40, 1423 (2014). https://doi.org/10.1016/j.ceramint.2013.07.025
  14. N.S. Ramgir, S.K. Ganapathi, M. Kaur, N. Datta, K.P. Muthe, D.K. Aswal, S.K. Gupta, and J.V. Yakhmi, Sens. Actuators B 151, 90 (2010). https://doi.org/10.1016/j.snb.2010.09.043
  15. J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). https://doi.org/10.1021/jp805919t
  16. K. Saetia, J.M. Schnorr, M.M. Mannarino, S.Y. Kim, G.C. Rutledge, T.M. Swager, and P.T. Hammond, Adv. Func. Mater. 24, 492 (2014). https://doi.org/10.1002/adfm.201302344
  17. M. Hubner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, Sens. Actuators B 153, 347 (2011). https://doi.org/10.1016/j.snb.2010.10.046
  18. C. A. Grimes, J. Mater. Chem. 17, 1451 (2007). https://doi.org/10.1039/b701168g