DOI QR코드

DOI QR Code

Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer

  • Lim, Hee Seon (Molecular-Level Interface Research Center, Department of Chemistry, KAIST) ;
  • Kim, Sehun (Molecular-Level Interface Research Center, Department of Chemistry, KAIST) ;
  • Kim, Jeong Won (Korea Research Institute of Standards and Science)
  • Received : 2014.11.20
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene ($C_{60}$) interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/$C_{60}$ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/$C_{60}$ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular ${\pi}-{\pi}$ overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and $C_{60}$ as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.

Keywords

References

  1. S. R. Forrest, Chem. Rev. 97, 1793 (1997). https://doi.org/10.1021/cr941014o
  2. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Nature 421, 829 (2003). https://doi.org/10.1038/nature01390
  3. P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 93, 3693 (2003). https://doi.org/10.1063/1.1534621
  4. B. O. Regan, M. Gratzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  5. L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 434, 194 (2005). https://doi.org/10.1038/nature03376
  6. F. Amy, C. Chan, A. Kahn, Org. Electron. 6, 85 (2005). https://doi.org/10.1016/j.orgel.2005.03.003
  7. M. Muntwiler, Q. Yang, W. A. Tisdale, X. Y. Zhu, Phys. Rev. Lett. 101, 196403 (2008). https://doi.org/10.1103/PhysRevLett.101.196403
  8. S. Kera, H. Yamane, N. Ueno, Prog. Surf. Sci. 84, 135 (2009). https://doi.org/10.1016/j.progsurf.2009.03.002
  9. W.Chen, D-C Qi, H H, X Gao, A. T. S. Wee, Adv. Funct. Mater. 21, 410 (2011). https://doi.org/10.1002/adfm.201000902
  10. K. 0. Sylvester-Hvid, J. Phys. Chem. B 110, 2618 (2006). https://doi.org/10.1021/jp055321h
  11. N. Sai, R. Gearba, A. Dolocan, J. R. Tritsch, W.-L. Chan, J. R. Chelikowsky, K. Leung, X. Zhu, J. Phys. Chem. Lett. 3, 2173 (2012). https://doi.org/10.1021/jz300744r
  12. C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian, M. S. Wang, Appl. Phys. Lett. 97, 083305 (2010). https://doi.org/10.1063/1.3483159
  13. Y. H. Kim, S. Kwon, J. H. Lee, S. M. Park, Y. M. Lee, J. W. Kim, J. Phys. Chem. C 115, 6599 (2011). https://doi.org/10.1021/jp111128k
  14. P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001). https://doi.org/10.1063/1.1384001
  15. J. G. Xue, S. R. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004). https://doi.org/10.1063/1.1713036
  16. S. Morita, A. A. Zakhidov, K. Yoshino, Solid State Communication 82, 249 (1992). https://doi.org/10.1016/0038-1098(92)90636-N
  17. T.-M. Kim, H. J. Kim, H.-S. Shim, M.-S. Choi, J. W. Kim, J.-J. Kim, J. Mater. Chem. A 2, 8730 (2014). https://doi.org/10.1039/c4ta00332b
  18. T.-M. Kim, H.-S. Shim, M.-S. Choi, H. J. Kim, J.-J. Kim, ACS Appl. Mater. Interfaces 6, 4286 (2014). https://doi.org/10.1021/am405946m
  19. S. R. Yost, T. V. Voorhis, J. Phy. Chem. C 117, 5617 (2013). https://doi.org/10.1021/jp3125186
  20. A. Twarowski, J. Chem. Phys. 77, 4698 (1982). https://doi.org/10.1063/1.444371