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THE EXISTENCE OF THE RISK-EFFICIENT OPTIONS

Ju Hong Kim

Abstract. We prove the existence of the risk-efficient options proposed by Xu [7].
The proof is given by both indirect and direct ways. Schied [6] showed the existence
of the optimal solution of equation (2.1). The one is to use the Schied’s result. The
other one is to find the sequences converging to the risk-efficient option.

1. Introduction

Let (Ω,F , (Ft)0≤t≤T , P ) be a complete filtered probability space. Let S =(St)0≤t≤T

be an adapted positive process which is a semimartingale. It is assumed that the
riskless interest rate is zero for simplicity and

M = {Q |Q ∼ P, S is a local martingale under Q} 6= ∅
to avoid the arbitrage opportunities [4].

Definition 1.1. A self-financing strategy (x, ξ) is defined as an initial capital x ≥
0 and a predictable process ξt such that the value process (value of the current
holdings)

Xt = x +
∫ t

0
ξudSu, t ∈ [0, T ]

is P -a.s. well-defined.

The set of admissible self-financing portfolios X (x) with initial capital x is defined
as

X (x) =
{

X
∣∣∣Xt = x +

∫ t

0
ξu dSu ≥ c, c is a constant, t ∈ [0, T ]

}
.

Let L0 be the set of all measurable functions in the given probability spaces.
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Definition 1.2. A coherent measure of risk ρ : L0 → R∪{∞} is a mapping satisfying
the following properties for X, Y ∈ L0

(1) ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subadditivity),
(2) ρ(λX) = λρ(X) for λ ≥ 0 (positive homogeneity),
(3) ρ(X) ≥ ρ(Y ) if X ≤ Y (monotonicity) ,
(4) ρ(Y + m) = ρ(Y )−m for m ∈ R (translation invariance).

The conditions of subadditivity (1) and positive homogeneity (2) in Definition 1.2
can be relaxed to a weaker quantity, i.e., convexity

ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for any λ ∈ [0, 1].(1.1)

Convexity means that diversification does not increase the risk. Also refer to the
papers [1, 3] for coherent or convex risk measures.

Definition 1.3. A map ρ : L0 → R is called a convex risk measure if it satisfies the
properties of convexity (1.1), monotonicity (3) and translation invariance (4).

Definition 1.4. The minimal risk ρx(·) with initial capital x is defined as the risk

ρx(L) = inf
X∈X (x)

ρ(L−XT )(1.2)

where the liability L is a random variable bounded below by a constant at time T ,

XT = x +
∫ T

0
ξu dSu and ρ(L−XT ) is a final risk.

Assumption 1.5. The convex risk measure ρ satisfies the Fatou property

ρ(X) ≤ lim
n→∞ inf ρ(Xn) if Xn → X a.s. as n →∞.(1.3)

Assumption 1.6. ρ : L0 → R satisfies ρ(X) = ρ(Y ) whenever X = Y P−a.s. and
for the positive payoff function H, the bounded conditions

ρ(L + H) < ∞ and −∞ < ρ0(0).(1.4)

Lemma 1.7 ([7]). The minimal risk defined as (1.2) is a convex risk measure.
Moreover, the translation invariance property satisfies the following relations

ρx1(X − x2) = ρx1+x2(X) = ρx1(X)− x2 for any x1, x2 ∈ R+.(1.5)

Lemma 1.8 ([7]). Let L be the initial liability bounded below by a constant and H

be the positive payoff function. Then for any fixed number x

−∞ < ρ(L−H) ≤ ρ(L) ≤ ρ(L + H) < ∞ and(1.6)

−∞ < ρx(L−H) ≤ ρx(L) ≤ ρx(L + H) < ∞.(1.7)
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The risk-efficient options are defined as the options having the same selling price,
which minimize the risk. That is, the risk-efficient options are the H that minimizes
ρx0+α(L + H) with the constraint p(H) = α, where p(H) is the selling price of
the option H, L is the initial liability, x0 is the initial capital, and ρx0+α(L + H)
is the minimal risk obtained by optimal hedging with capital x0 + α as defined in
(1.2). Here ρ is a risk measure. Xu [7] defined such risk-efficient options and asked a
question of their existence. The option seller could get the same minimal risk even
though he or she choose any one of available risk-efficient options. Every contingent
claim is replicable, i.e., perfectly hedged in a complete market. We should consider
risk-efficient options in an incomplete market.

This paper is structured as follows. We prove the existence of risk-efficient options
by using Schied’s result in Section 2. We prove it by finding the sequences converging
to the risk-efficient option in Section 3.

2. Indirect Proof

In this section, we assume that ρ is convex risk measure satisfying Fatou property
and H is FT−measurable contingent claim which is bounded. Xu [7] treated option
H which is positive.

Schied [6] supposes an agent wishes to raise the capital v(≥ 0) by selling a con-
tingent claim and tries to find a contingent claim such that the risk of the terminal
liability is minimal among all claims satisfying the issuer’s capital constraints, i.e.,

min
0≤H≤K
E[ϕH]≥v

ρ(−H),(2.1)

where the price density ϕ is a P−a.s. strictly positive random variable with E[ϕ] = 1.
The problem is called the Neyman-Pearson problem for the risk measure ρ.

Lemma 2.1 ([6]). Assume that the conditions of convexity (1.1), monotonicity in
Definition 1.2 and Fatou property (1.3) hold. Then there exists a solution to the
Neyman-Pearson problem (2.1).

Lemma 2.2 ([6]). Any solution H∗ of the Neyman-Pearson problem (2.1) with
capital constraint v ∈ [0,K] satisfies E[ϕH∗] = v.

In terms of liabilities −X and −Y , the properties of convexity (1.1), monotonic-
ity (3) and translation invariance (4) in Definition 1.2 are respectively expressed as
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ρ(λ(−X) + (1− λ)(−Y )) ≤ λρ(−X) + (1− λ)ρ(−Y ) for λ ∈ [0, 1],(2.2)

ρ(−X) ≤ ρ(−Y ) if X ≤ Y,(2.3)

ρ(−X + m) = ρ(−X) + m for m ∈ R.(2.4)

The properties of (2.2), (2.3) and (2.4) can be easily derived by taking ρ(−X) =
ψ(X) for a convex risk measure ψ(X).

For the option payoff function H and an initial capital x0, we show that in
Theorem 2.4 there exists a risk-efficient option H∗ satisfying

inf
0≤H≤K
E[ϕH]≥x

ρx+x0(L + H) = ρx+x0(L + H∗),

where L is the initial liability uniformly bounded below by cL, and the price density
ϕ is a P−a.s. strictly positive random variable with E[ϕ] = 1.

In a term of liability −H, define η as

η(−H) := ρx+x0(L + H).(2.5)

Then η is well defined by Assumption 1.6.

Lemma 2.3. η(−H) is a convex risk measure and law-invariant.

Proof. First, let’s prove the convexity. Let H1, H2 and H be FT -measurable payoff
functions and λ ∈ [0, 1], m ∈ R.

η(λ(−H1) + (1− λ)(−H2)) = ρx+x0(L + λH1 + (1− λ)H2)

= ρx+x0(λ(L + H1) + (1− λ)(L + H2))

≤ λρx+x0(L + H1) + (1− λ)ρx+x0(L + H2)

= λη(−H1) + (1− λ)η(−H2).

Secondly, let’s prove the monotonicity. Let H1 ≤ H2. Then

η(−H1) = ρx+x0(L + H1) = inf
X∈X (x+x0)

ρ(L + H1 −XT )

≤ inf
X∈X (x+x0)

ρ(L + H2 −XT ) = η(−H2).

Thirdly, let’s prove the translation invariance.

η(−H + m) = ρx+x0(L− (−H + m)) = inf
X∈X (x+x0)

ρ(L + H −XT −m)

= inf
X∈X (x+x0)

ρ(L + H −XT ) + m = ρx+x0(L + H) + m

= η(−H) + m.
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So η is a convex risk measure.
Last, let’s prove η(−H1) = η(−H2) whenever H1 = H2 P−a.s.. Let H1 = H2

P−a.s.. Then we have L + H1 = L + H2 P−a.s.. Since ρ(L + H1) = ρ(L + H2), we
get

η(−H1) = ρx+x0(L + H1) = ρx+x0(L + H2) = η(−H2).

¤

Theorem 2.4. If x ∈ (0,K), then there exists H∗ ∈ [0,K], E[ϕH∗] = x such that

inf
0≤H≤K
E[ϕH]≥x

η(−H) = η(−H∗) ⇐⇒ inf
0≤H≤K
E[ϕH]≥x

ρx+x0(L + H) = ρx+x0(L + H∗).

Proof. η(H) is a convex risk measure by Lemma 2.3. By Lemmas 2.1 and 2.2, it is
proved. ¤

Now we give bounded conditions to x for the E[ϕH∗] = x to be a no-arbitrage
price. Xu [7] defined the selling price SP and the buying price BP of the option
H(≥ 0) as

SP (H) = min{x : ρx0+x(L + H) ≤ ρx0(L)},(2.6)

BP (H) = max{x : ρx0−x(L−H) ≤ ρx0(L)}(2.7)

respectively.
By the translation invariance relation (1.5), the equations (2.6) and (2.7) become

SP (H) = min{x : ρx0(L + H)− ρx0(L) ≤ x}
= ρx0(L + H)− ρx0(L),

BP (H) = max{x : x ≤ ρx0(L)− ρx0(L−H)}
= ρx0(L)− ρx0(L−H)

respectively. Since the final risk exposure both ρx0+x(L + H) and ρx0−x(L−H) do
not exceed the initial risk ρx0(L), i.e.,

ρx0(L + H)− x = ρx0+x(L + H) ≤ ρx0(L),

ρx0(L−H) + x = ρx0−x(L−H) ≤ ρx0(L),

we have

SP (H) = ρx0(L + H)− ρx0(L) ≤ x ≤ ρx0(L)− ρx0(L−H) = BP (H).(2.8)



312 Ju Hong Kim

Thus for the E[ϕH∗] = x to be a no-arbitrage price of H∗, it should satisfy the
inequalities

SP (H) ≤ E[ϕH∗] = x ≤ BP (H).

3. Direct Proof

In this section, we find the sequences converging to the risk-efficient option for
the proof of its existence.

Lemma 3.1 (Föllmer and Schied [5]). Let (ξn)n≥1 be a sequence in L0(Ω,F ,P;Rd)
such that supn |ξn| < +∞ P -a.s.. Then there exists a sequence of convex combina-
tions

ηn ∈ conv{ξn, ξn+1, . . .}
which converges P -a.s. to some η ∈ L0(Ω,F ,P;Rd).

Define

X (x, b) = {X |X ∈ X (x) and XT ≥ x− b}.
Then we have

X (x) =
⋃

b∈R+

X (x, b).

Theorem 3.2 ([7]). Under two assumptions (1.3) and (1.4) and M 6= ∅, there
exists an optimal admissible hedging portfolio X∗ ∈ X (x, b) which is the solution of
the minimal risk problem

ρx
b (L) := inf

X∈X (x,b)
ρ(L−XT ) = ρ(L−X∗

T ),(3.1)

for any b ∈ R+ and x ∈ R.

Let H be a payoff function of an option, x ∈ R+, and let Q ∈M be fixed.

Lemma 3.3. There exists F−measurable H∗ and Xb,∗
T ∈ X (x, b), depending on H∗

such that EQ[H∗] = x,

inf
EQ[H]=x

ρx
b (L + H) = ρ(L + H∗ −Xb,∗

T ) := ρx
b (L + H∗).

Proof. By Theorem 3.2, for each H there exists Xb,H
T ∈ X (x, b) such that

ρx
b (L + H) := inf

X∈X (x,b)
ρ(L + H −XT ) = ρ(L + H −Xb,H

T ).
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Choose the sequences Hn and Xn
T ∈ X (x, b) satisfying

EQ[Hn] = x,

ρ(L + Hn −Xn
T ) ↘ inf

EQ[H]=x
ρx

b (L + H).

Then Lemma 3.1 implies that there exist the sequences X̃n
T ∈ conv{Xn

T , Xn+1
T , · · ·}

such that

X̃n
T −→ Xb,∗

T ∈ X (x, b) as n →∞.

The sequence X̃n
T can be expressed as the convex combination

X̃n
T =

km∑

i=k1

λn
i Xi

T , n ≤ k1 < · · · < km,

km∑

i=k1

λn
i = 1, λn

i ≥ 0.

Set H̃n =
∑km

i=k1
λn

i Hi, in which is the sequence Hi in the chosen pair Hi and
Xi

T ∈ X (x, b).
It is easy to see

EQ[H̃n] =
km∑

i=k1

λn
i EQ[Hi] = x.(3.2)

If we apply the Lebesgue Dominated Convergence Theorem to the equation (3.2),
then there exists H∗ such that limn→∞ H̃n = H∗ Q-a.s., and EQ[H∗] = x.

So we have

ρ(L + H̃n − X̃n
T ) = ρ

(
L +

km∑

i=k1

λn
i Hi −

km∑

i=k1

λn
i Xi

T

)

= ρ
( km∑

i=k1

λn
i (L + Hi −Xi

T )
)
≤

km∑

i=k1

λn
i ρ(L + Hi −Xi

T )

≤ ρ(L + Hn −Xn
T )

km∑

i=k1

λn
i = ρ(L + Hn −Xn

T )

≤ sup
m≥n

ρ(L + Hm −Xm
T ).(3.3)

By applying the Fatou property to ρ(L+ H̃n− X̃n
T ) and also using the inequality

(3.3), we have
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ρ(L + H∗ −Xb,∗
T ) ≤ lim infn→∞ρ(L + H̃n − X̃n

T )

≤ limn→∞ sup
m≥n

ρ(L + Hm −Xm
T )

= inf
EQ[H]=x

ρx
b (L + H).

Since EQ[H∗] = x and Xb,∗
T ∈ X (x, b), we have

ρ(L + H∗ −Xb,∗
T ) = inf

EQ[H]=x
ρx

b (L + H).

¤

Theorem 3.4. Let p(H) = EQ[H] be the pricing rule of the option H for a fixed
Q ∈ M. Let x0 be an initial capital. Then there exists a risk-efficient option H∗

satisfying

inf
p(H)=x

ρx0+x(L + H) = ρx0+x(L + H∗),

where L is the initial liability uniformly bounded below by cL.

Proof. Let Q ∈M be fixed. Since ρx+x0(L + H) = ρx(L + H)− x0, we need only to
consider

ρx(L + H).

For X ∈ X (0), by Assumption 1.6 and translation invariance property, the following
both inequality and equality

ρ(L + H −XT ) ≥ ρ(cL + 0−XT ) ≥ cL + ρ(−XT )

≥ cL + ρ0(0) > −∞, and

ρx(L + H) = ρ0(L + H)− x

imply that ρx(L + H) is well-defined for all X ∈ X (x).
By Theorem 3.2, for each H there exists Xb,H

T ∈ X (x, b) such that

ρx
b (L + H) := inf

X∈X (x,b)
ρ(L + H −XT ) = ρ(L + H −Xb,H

T ).

Let ε > 0. Then since

ρx
b (L + H) ↘ ρx(L + H) as b ↗∞,

there exists a large nonnegative integer N ∈ Z+ satisfying

b > N =⇒ ρx(L + H) + ε > ρx
b (L + H).(3.4)

The equation (3.4) and Lemma 3.3 imply the following inequality
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inf
EQ[H]=x

ρx(L + H) + ε > inf
EQ[H]=x

ρx
b (L + H) = ρx

b (L + H∗).

So we have

inf
EQ[H]=x

ρx(L + H) ≥ ρx
b (L + H∗),

and so

inf
EQ[H]=x

ρx(L + H)≥ lim
b↗∞

ρx
b (L + H∗).(3.5)

On the other hand, since ρx(L + H) < ρx
b (L + H) we have the inequality

inf
EQ[H]=x

ρx(L + H) ≤ inf
EQ[H]=x

ρx
b (L + H) = ρx

b (L + H∗)

and by letting b go to infinity we get

inf
EQ[H]=x

ρx(L + H)≤ lim
b↗∞

ρx
b (L + H∗).(3.6)

By the inequalities (3.5) and (3.6), we get

inf
EQ[H]=x

ρx(L + H) = ρx(L + H∗).

The theorem has been proved. ¤

For the pricing rule EQ[H] = x of the option H to be an no-arbitrage price, it
should also satisfy

SP (H) ≤ x ≤ BP (H),

as we showed the reason in Section 2.
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