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MOTION IN A HANGING CABLE WITH VARIOUS DIFFERENT
PERIODIC FORCING

Hyeyoung Oh

Abstract. We investigate long-term motions of the cable when cable has different
types of periodic forcing term. Various different types of solutions are presented by
using the 2nd order Runge-Kutta method under various initial conditions. There
appeared to be small- and large-amplitude solutions which have different nodal
structure.

1. Introduction

Cable vibration problems are of considerable antiquity. Starting with Taylor
in 1713 and continuing with the work of D’Alembert, Euler, and Daniel Bernoulli
during the first half of the eighteenth century, did its mathematical theory become
firmly established. In 1744, Euler derived the correct equations for the large vibra-
tions of a string in a plane. He regarded the equations as the limit of those for a
finite collection of beads joined by massless springs as the number of beads approach
infinity while their total mass remains fixed [2]. The motion of the system of beads
is described by a finite system of ordinary differential equations [2].

It is known that hanging cables sometimes oscillate with large amplitudes under
moderate wind force. Such motions, known as galloping in the literature, can cause
collapse of the supporting towers.

Galloping has been an observed problem for many years [4, 6, 8, 12]. It is the
large amplitude up-and-down motion that can break lines and cause catastrophic
failure towers of their supporting according to the Electric Power Research Institute.
Considerable effort has been expended in trying to solve the problem of galloping in
long spans of power transmission lines [11].
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If by chance a gust of wind or some other disturbance causes a tremor in the
cable, these small forces actually will transmit energy to the cable [13]. Should their
frequencies correspond to, or very nearly to, a frequency of resonant vibration for
the cable, the cable gradually will start vibrating in a number of loops such that
the frequency of vibration of the cable coincides with the frequency of the eddy
currents [13]. Thus, even though the magnitude of the forcing term is small, the
phenomenon of linear resonance is supposedly enough to explain the large oscillation
[13] and break lines [11]. However, this explanation fails to reconcile the fact that
galloping occurs under a wide range of forcing frequencies due to wind.

It is known that the equation

(1.1) y′′ + δy′ + by+ − ay− = c + λ sinµt

has related large amplitude solutions even for small forcing terms which have a
natural frequency away from the natural “equilibrium frequency” of

√
b ([5]). We

develop a model of the hanging cable which exhibits this phenomena.
We modeled a cable as a multiple particle oscillator and performed extensive

numerical experiments.
We shall show that under a variety of periodic forcing, multiple stable periodic

solutions exist. Some of these solutions possess large amplitudes and can be induced
by proper initial conditions. Thus it might be explain why wind gust can cause a
cable to gallop even after the wind die down. We shall investigate the cable motion
when the supporting towers have small displacements. We find that longitudinal
motions may occur even when they have only vertical forcing. Longitudinal motions,
one-nodal, and two-nodal symmetric solutions are evident in our numerical results.

2. Governing Equation

Let a cable be as a series of equally contributed point masses. Let point masses be
connected by nonlinear springs having the same unstretched lengths. In the loaded
hanging cable, the restoring force between two particles in a cable is such that it
strongly resists extension, but does not resist compression in large motions. Thus,
the simplest function to model the restoring force of the cable between two particles
would be a nonlinear term u+, which is a constant times u, the extension, if u is
positive, but zero if u is negative, corresponding to compression. The vertical peri-
odic forces commonly influence the restoring forces. Let damping force be supposed
to work in an opposite direction of the motion having a magnitude proportionate to
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Figure 1. Diagram for equally distributed particles.

the instantaneous velocity.
Let a cable be hung between two fixed particles whose distance are L and height

are same. The line joining two fixed particles which located at x = 0 and x = L will
be considered as the x-axis. Let (ui(t), vi(t)) be the instantaneous position of the
i-th particle at time t. It has the positive directions for x and y and is presented in
Figure 1.

Then we have the following equations which derived by Newton’s second law and
Hooke’s law.

ρld2ui/dt2 = −k(Pi−1Pi − l)+ cos θi + k(PiPi+1 − l)+ cosαi − cldui/dt

ρld2vi/dt2 = −k(Pi−1Pi − l)+ sin θi + k(PiPi+1 − l)+ sinαi − cldvi/dt

+ρlg + lf(ũi, t)(2.1)

where ũi = i∆x/L,∆x = L/(N +1), and N is the number of particles discretizing
the cable.

Pi−1Pi is the distance between two particles Pi−1 and Pi at time t. PiPi+1 (1 ≤
i ≤ N) is the same to Pi−1Pi. Here, P0(u0, v0) = P0(0, 0) and PN+1(uN+1, vN+1) =
PN+1(L, 0) are the two fixed supports.

The letter ρ denotes the mass per unit length of unstretched cable and the letter l

denotes the unstretched length of the spring between two point masses. The letter c

denotes the damping coefficient per unit unstretched length and the letter g denotes
the accelation due to gravity. We denote the spring constant as k and k = EA

l ,
where E is Young’s modulus and A is the cross section area. When we model a
cable, l can be reduced by half in doubling the number of particles. So k can be
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increased by two. Hence, The letter θi and αi denote the angles which the cable
forms with the x-axis, that are shown in figure 1.

When we substitute the geometric relations between lengths and angles into equa-
tions (2.1) and divide by mass, we have the following equations,

d2ui

dt2
= − k

ρl
(
√

(ui − ui−1)2 + (vi − vi−1)2 − l)+
(ui − ui−1)√

(ui − ui−1)2 + (vi − vi−1)2

+
k

ρl
(
√

(ui+1 − ui)2 + (vi+1 − vi)2 − l)+
(ui+1 − ui)√

(ui+1 − ui)2 + (vi+1 − vi)2

− c

ρ
dui/dt,

d2vi

dt2
= − k

ρl
(
√

(ui − ui−1)2 + (vi − vi−1)2 − l)+
(vi − vi−1)√

(ui − ui−1)2 + (vi − vi−1)2

+
k

ρl
(
√

(ui+1 − ui)2 + (vi+1 − vi)2 − l)+
(vi+1 − vi)√

(ui+1 − ui)2 + (vi+1 − vi)2

− c

ρ
dvi/dt + g +

1
ρ
f(ũi, t),

where u0(t) = 0, uN+1(t) = L, v0(t) = 0, vN+1(t) = 0, 1 ≤ i ≤ N . We take the
forcing term f(ũi, t) as λ sin 3πũi sinµt, where ũi = i∆x/L and ∆x = L/(N + 1).

Let ~u = (u1,v1, · · · , uN,vN )T , ~S = (S1,T1, · · · , SN,TN )T . Then the given nonau-
tonomous system becomes

d2~u

dt2
= ~S(t, ~u),

where

Si (ui−1,vi−1, ui,vi, ui+1,vi+1, t)

= − k

ρl
(
√

(ui − ui−1)2 + (vi − vi−1)2 − l)+
(ui − ui−1)√

(ui − ui−1)2 + (vi − vi−1)2

+
k

ρl
(
√

(ui+1 − ui)2 + (vi+1 − vi)2 − l)+
(ui+1 − ui)√

(ui+1 − ui)2 + (vi+1 − vi)2

− c

ρ
dui/dt,

Ti (ui−1,vi−1, ui,vi, ui+1,vi+1, t)

= − k

ρl
(
√

(ui − ui−1)2 + (vi − vi−1)2 − l)+
(ui − ui−1)

(
√

(ui − ui−1)2 + (vi − vi−1)2
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+
k

ρl
(
√

(ui+1 − ui)2 + (vi+1 − vi)2 − l)+
(vi+1 − vi)√

(ui+1 − ui)2 + (vi+1 − vi)2

− c

ρ
dvi/dt + g +

1
ρ
f(ũi, t).

Here, f(ũi, t) = λ sin 3πũi sinµt where ũi = i∆x/L and ∆x = L/(N + 1).
We will solve the system of differential equations numerically. In order to study

the system numerically, we will search for stable periodic solutions by solving the
initial value problem for various initial conditions and allowing the solution to run
for large time.

We stress that we have little concern about the transient solutions to the initial
value problems, solely their ultimate long-term behavior. To solve the system, we
use the 2nd-order Runge-Kutta method using higher precision.

3. Main Results

Rather than use the original approach to the vibrating cable adopted by Euler,
we solve the system for several numbers of particles by computation. Since cable
is a continuous structure, we need more particles to approximate the cable. To
approximate the cable, we solve the system by computation using various different
numbers of particles. Then we discover that it achieves the convergence, which
means the motion remains in the same even as the number of particles is increased. In
fact, we get the convergence for the solutions as the number of particles is increased
to 63, 127. We illustrate the 63-particle case for the galloping cable because the
pictures for the larger number of particles are identical with figures presented.

We let the interval of length be 1, unstretched length of cable be 1.2, the total
mass be 5, and f(ũi, t) = λ sin 3πũi sinµt, where ũi = i∆x/L and ∆x = L/(N + 1).
Based on the previous experience in [5], we expect to find interesting results near
linear resonance. We consider the long-term solutions of the 63-particle case.

The interesting solutions are investigated when sufficient time has elapsed for the
transient behaviors to have disappeared. We observe the shapes of cables in the last
8 periods. In order to find whether the solutions are periodic or not, we observe
the Poincaré section. If they are periodic, we find out their corresponding periods.
Each of the plots show the last five equally spaced profiles of motions in the final
period. We shall compare cable motion in two-noded forcing

(f(ũi, t) = λ sin 3πũi sinµt)
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Figure 2. The small-amplitude solution for µ = 4.8 and λ = 5.2.
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Figure 3. The small-amplitude solution for µ = 8.6 and λ = 2.4.

with that in no-noded forcing

(f(ũi, t) = λ sinπũi sinµt).

3.1. Shapes of cables
3.1.1. Small-amplitude solutions In the case of no-noded forcing, as long as the
initial values and λ are small, we have typical small-amplitude oscillations over wide
range of frequencies [10].

In the case of two noded forcing, small-amplitude oscillations appear around the
frequencies which observed in no-noded forcing. The small-amplitude oscillations
have two types of movements. One is two-nodal motion and the other is one-nodal
motion.
(1) Two-nodal motion Around µ = 5.0, the small-amplitude solution has the maxi-
mum displacement in the middle as we predicted from the forcing. Figure 2 shows a
two-nodal motion which is symmetric about the mid point at µ = 4.8 and λ = 5.2.
(2) One-nodal motion
Around µ = 8.0, the small-amplitude solution barely moves in the middle of the
cable. Figure 3 shows a one-nodal motion which has a longitudinal component at
µ = 8.6 and λ = 2.4.
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Figure 4. The large-amplitude solution for µ = 5.2 and λ = 0.4.

3.1.2. Large-amplitude solutions Differently from the case of small initial condition,
in the case of using large initial condition, small amplitude of forcing does not
guarantee that the long term solution of small amplitude solution would converge
to that solution.

In the case of no-noded forcing, three types of nonlinear behavior were found [10].
Solutions found are subharmonic solution which is a solution of double the period of
the forcing term (Figure 4), large-amplitude solution which is of near periodic and
no-noded, and longitudinal solution (similar to Figure 5).

In the case of two-noded forcing, the motions of cables with the large initial values
are no-nodal motion, one-nodal motion, and two-nodal motion.
(1) No-nodal motion
The large-amplitude solutions around µ = 5.0 are almost same as solutions with
no-nodal forcing. It is presented in figure 5. It is slightly unsymmetric and no-nodal
motion which is close to periodic with the same period as the forcing term. This
large-amplitude no-nodal motions occur at µ = 4.8, existing from λ = 4.4 to λ = 6.0,
at µ = 5.0, existing from λ = 3.2 to λ = 6.0, and at µ = 5.2, existing from λ = 0.8
to λ = 2.2. Hence, large-amplitude solutions of this type exist without regard to the
nodal types of forcing term.

Similarly to the case of no-noded forcing, as the frequency of the forcing term
becomes small about the linear resonance, the amplitude of the solution with large
initial displacement tends to increase and the motion of it becomes more disorga-
nized.
(2) One-nodal motion
At higher frequency, we find a different type of oscillation. We observe a longitudinal
motion in the first few periods even though the initial conditions are purely vertical,
but after long time this changes to up and down motion. It is observed at µ = 8.6 and
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Figure 5. The large-amplitude solution for µ = 4.8 and λ = 5.2.
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Figure 6. One-nodal solution for µ = 8.6 and λ = 2.8.

λ = 2.8 (Figure 6). It shows a one-nodal motion which has a pronounced longitudinal
component. One-nodal motion is periodic with double period of forcing.
(3) Two-nodal motion
Around µ = 8.6, two-nodal motion is found. It is the solution got by large initial
condition. It looks symmetric and fuzzily. This is observed at µ = 8.6, from λ = 3.4
to λ = 5.6.

At µ = 8.6 and λ = 2.8, the solution got by large initial condition is one-nodal
(Figure 6) and the solution got by small initial condition is two-nodal (Figure 7).
But at µ = 8.6 and from λ = 3.4, the opposite phenomenon is appeared. The
solution got by large initial condition is two-nodal and one got by small condition is
one-nodal. Two-nodal motion appeared to be the double period as the forcing term.

The large-amplitude solutions, which are periodic with double period of the forc-
ing, or almost periodic with a period of the forcing, reflect the nodal type of the
forcing.

3.1.3. Multiple periodic solutions We have the small- and large-amplitude solutions
at µ = 4.8, existing from λ = 4.4 to λ = 6.0, at µ = 5.0, existing from λ = 3.2 to
λ = 6.0, and at µ = 5.2, existing from λ = 0.8 to λ = 2.2. Figure 2 and 5 show the
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Figure 7. Two-nodal solution for µ = 8.6 and λ = 2.8.
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Figure 8. The small-amplitude solution for µ = 4.8, and λ = 0.1
when two supports with forces out of phase move.

small- and large-amplitude solutions at λ = 4.8, µ = 5.2, respectively. Figure 6 and
7 show multiple solutions at λ = 8.6, µ = 2.8.

While in the case of no-noded forcing, small- and large-amplitude solution have
one type of node, which is no-nodal, small- and large-amplitude solution have some
types of node in the case of two-noded forcing.

Even when there exist small-amplitude solutions for the given forcing, large initial
conditions could result in lasting large-amplitude solutions. This means that the
solution after large time is keen to initial conditions.

3.2. Other type of forcing term In the case of the suspension cable, it is kept in
an equilibrium position of extension by the suspended weight of the road-bed, and
periodic forces would be exerted either by aerodynamic effects of the wind on the
road-bed or by the oscillations of the towers. The oscillation of the towers could be
induced by motions of the side-spans, or wind effects on the towers, or wind effects
on the cable system [12].

We investigate the effect of forcing caused by vibrations on the motions of the
cable in two supports. We change the forcing just on two supports P0 and PN+1
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Figure 9. The large-amplitude solution for µ = 4.8, and λ = 0.1
when two supports with forces out of phase move.
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Figure 10. The small-amplitude solution for µ = 4.2 and λ = 0.02
when two supports with forces in phase move.

which are the left endsupport and the right endsupport with the forces out of phase.
This might be the force exerted by vibrating towers with towers out of phase. This
experiment consists of employing the forcing f(t) = λ sinµt on P0(0, 0) which is the
left endsupport and f(t) = −λ sinµt on PN+1(1, 0) which is the right endsupport.

The small- and large-amplitude solutions are found. The small-amplitude solu-
tion is symmetric about the mid point and periodic with the same period as the
forcing term. This is presented in figure 8. The large-amplitude solutions are verti-
cal motions which are likely analogous to the large-amplitude solutions which found
in consequence of a vertical forcing (Figure 9). Hence, there exist large and small-
amplitude solutions at µ = 4.8 and λ = 0.1. Until the amplitude of the forcing term
induces the magnitude of the solution to arrive in a certain critical value, the linear
picture is found.

If we change the forcing just on two supports P0 and PN+1 with the forces in
phase, the cable motion is quite different from the case where the supporting towers
are out of phase. Small or large motions are observed, even though we give forcing
with much smaller displacements in the supports (Figure 10, 11, 12). The motions
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Figure 11. The large-amplitude solution for µ = 4.2 and λ = 0.02
when two supports with forces in phase move.
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Figure 12. The longitudinal solution for µ = 4.6 and λ = 0.08 when
two supports with forces in phase move.

are longitudinal and the amplitude of solutions can be large.
This may well be the explanation of why cables of suspension bridge develop

longitudinal motions, since the towers of the suspension bridges have been known
to oscillate in both the in-phase and out-of-phase mode, possibly due to motions in
the side spans [1].

4. Conclusion

In the third section, we mainly discussed about the effects of other types of forcing
term (f(ũi, t) = λ sin 3πũi sinµt), comparing with the result of the no-noded forcing
(f(ũi, t) = λ sinπũi sinµt). These result from careful and exhaustive computational
experiments. The phenomenon found is that the solution of the system after long
time depends on the initial conditions over a large scope of µ and λ. If the initial con-
ditions are close to equilibrium, the solutions are small motions which are two-noded
or one-noded in character. However, if initial conditions are large displacement, the
long term solution can either stay in a large-amplitude solution, which is of one-
noded, two-noded, or no-noded, or can converge to the small-amplitude solution.
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The large-amplitude solutions may have two different types from the view of
period. One is near-periodic solution which is in a state of disorder, the other is
periodic solution which is double period of the forcing term. What we found was that
there appeared to be a symmetry-breaking, in which initial conditions and purely
vertical forcing terms could give rise to a pronounced longitudinal motions in the
cable model for some time.

To investigate the effect of motion induced by vibrations in the supporting towers,
we move the supporting towers, out of phase and in phase in a periodic way. We
find that longitudinal motions may occur even when they have only vertical forcing.
It is proven that this is a lasting problem in the cable of suspension bridge. In fact,
after the Bronx-Whitestone bridge was constructed, it was actually modified to stop
this behavior.
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