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ISOPARAMETRIC FUNCTIONS IN S4n+3

Seo-In Jee a and Jae-Hyouk Lee b, ∗

Abstract. In this article, we consider a homogeneous function of degree four in
quaternionic vector spaces and S4n+3 which is invariant under S3 and U(n + 1)-
action. We show it is an isoparametric function providing isoparametric hypersur-
faces in S4n+3 with g = 4 distinct principal curvatures and isoparametric hypersur-
faces in quaternionic projective spaces with g = 5. This extends study of Nomizu
on isoparametric function on complex vector spaces and complex projective spaces.

1. Introduction

A hypersurface Mn embedded in Rn+1 or a unit sphere Sn+1 is said to be isopara-
metric if it has constant principal curvatures. Isoparametric hypersurfaces in Rn+1

must have at most two distinct principal curvatures so that the classification con-
sists of an open subset of a hyperplane and a hypersphere or a spherical cylinder
Sk × Rn−k. On the other hand, isoparametric hypersurfaces in spheres are rather
complicated. In 1938-1940, É. Cartan published a series of four remarkable papers
[2, 3, 4, 5] about isoparametric hypersurfaces in spheres which also classified isopara-
metric hypersurfaces in spheres with g = 1, 2 or 3 distinct principal curvatures. More
than thirty years later, Münzner showed that isoparametric hypersurfaces in sphere
can have only g = 1, 2, 3, 4 or 6 distinct principal curvatures in [10, 11]. After
Münzner’s great achievements, many mathematicians strived to classify cases g = 4
and 6. Even though much progress has been made, they are still open.

The concept of isoparametric hypersurfaces in general manifolds is not completely
determined. When we consider a compact hypersurface M in a compact symmetric
space M̃ , we call it isoparametric if all nearby parallel hypersurfaces of M have
constant mean curvatures. Wang [15], Kimura [9], Park [13] and Xiao [16] have
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studied isoparametric hypersurfaces in CPn. Here the isoparametric hypersurfaces
in S2n+1 and CPn are related via the Hopf fibration S2n+1 → CPn. Moreover, Park
[13] also considered isoparametric hypersurfaces in S4n+3 and HPn via the Hopf
fibration S4n+3 → HPn. Therefrom, we are interested in the isoparametric hyper-
surfaces in S4n+3 which are invariant under Sp(1) = S3 action of Hopf fibration.
In particular, we consider the work of Nomizu [12] which provided an example of
g = 4 case in S2n+1 ⊂ Cn+1 and extend his study to S4n+3 ⊂ Hn+1. We construct
an isoparametric function on S4n+3 ⊂ Hn+1 which is homogeneous of degree four
and invariant under S3 and U(n + 1)-action. By using this function, we obtain a
homogeneous isoparametric family of hypersurfaces that presents one example of
g = 4 case as an extension of the result of Nomizu [12]. Here, we obtain a family
of isoparametric hypersurfaces in S4n+3 of four distinct principal curvatures with
multiplicities 2, 2, 2n− 1, 2n− 1. Moreover by applying [13] the family also induces
a family of isoparametric hypersurfaces in HPn having g = 5 with multiplicities 3, 2,
2, 2n− 4, 2n− 4 via Hopf fibration on S4n+3 to HPn, and a family of isoparametric
hypersurfaces in CP 2n+1 having g = 5 with multiplicities 1, 2, 2, 2n− 2, 2n− 2 via
Hopf fibration on S4n+3 to CP 2n+1.

2. Preliminaries

In this section, following [7], [12] and [14], we recall the definition of isoparametric
function and isoparametric family in a real space form M̃n+1

c which is an (n +
1)-dimensional, simply connected, complete Riemannian manifolds with constant
sectional curvature c (= 1, 0,−1). Here M̃n+1

1 is a unit sphere Sn+1 ⊂ Rn+2, M̃n+1
0 is

Rn+1, and M̃n+1
−1 is the hyperbolic space Hn+1.

Isoparametric family, parallel hypersurfaces, and constant principal cur-
vatures. A non-constant real-valued function F defined on a connected open subset
of M̃n+1

c is called an isoparametric function if it satisfies a system of differential
equations

| gradF |2 = T ◦ F, ∆F = S ◦ F,

for some smooth function T and S where ∆F is the Laplacian of F . Moreover,
the collection of an 1-parameter hypersurface of M̃n+1

c which is equal to level sets
F−1(t) is called an isoparametric family of M̃n+1

c .
For each connected oriented hypersurface Mn embedded in M̃n+1

c with a unit
normal vector field ξ on it, we define a map
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φ : Mn × R → M̃n+1
c

(X, t) 7→ φ (X, t)

where φ (X, t) is a point in M̃n+1
c reached after moving the point X of Mn by

t along the normal geodesic α(s) in M̃n+1
c with α(0) = X and α′(0) = ξX (unit

normal vector of ξ at X). For each fixed t ∈ R, the image φ (Mn, t) of Mn is called
parallel hypersurface.

A connected hypersurface Mn in the space form M̃n+1
c is said to have constant

principal curvatures if there are distinct constants λ1, . . . , λg representing principal
curvatures given by a field of unit normal vector ξ at every point. Here, the multiplic-
ity mi of λi is same throughout Mn and

∑g
i=1 mi = n. If the oriented hypersurface

Mn has constant principal curvatures, one can show that each parallel hypersurface
Mn

t also has constant principal curvatures. In particular, it is known that the level
hypersurfaces of an isoparametric function F form a family of parallel hypersurfaces
with constant principal curvatures. Conversely, for each connected hypersurface
Mn of M̃n+1

c with constant principal curvatures, we can construct an isoparametric
function F so that each φ(Mn, t) is contained in a level set of F which turns out
a level set itself. In conclusion, an isoparametric hypersurface of the isoparametric
family is defined as a hypersurface with constant principal curvatures.

Cartan’s work on isoparametric hypersurfaces. Cartan considered an isopara-
metric hypersurface Mn of M̃n+1

c with g distinct principal curvatures λ1, . . . , λg,
having respective multiplicities m1, . . . ,mg. For g > 1, Cartan showed an important
equation known as Cartan’s identity([4])

∑

j 6=i

mj
c + λiλj

λi − λj
= 0

for each i, 1 ≤ i ≤ g. From this, he was able to determine all isoparametric
hypersurfaces in the cases c = 0 and c = −1.

For M̃n+1
1 = Sn+1, Cartan ([3]) provided examples of isoparametric hypersur-

faces with g = 1, 2, 3 or 4 distinct principal curvatures. Moreover, he classified
isoparametric hypersurfaces with g ≤ 3 as follows.

(i) (g = 1) The isoparametric hypersurface Mn with g = 1 is totally umbilic, thus
Mn is an open subset of a great or small hypersphere in Sn+1.

(ii) (g = 2) The isoparametric hypersurface Mn with g = 2 is a standard product
of two spheres with radius r1 and r2 in the unit sphere Sn+1(1) in Rn+2, namely,
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Mn = Sp(r1)× Sq(r2) ⊂ Sn+1(1) ⊂ Rp+1 × Rq+1 = Rn+2,

where r2
1 + r2

2 = 1 and n = p + q.
(iii) (g = 3) The isoparametric hypersurface Mn with g = 3 must have the princi-

pal curvatures with the same multiplicity m = 1, 2, 4 or 8, and it is a tube of constant
radius over a standard embedding of a projective plane FP 2 into S3m+1, where F is
the division algebra R,C,H and O, for m = 1, 2, 4 and 8 respectively. Therein, it
was showed that any isoparametric family with g distinct principal curvatures of the
same multiplicity can be defined by a function F on Rn+2 satisfying the equation

F |Sn+1 = cos gt.

Note the function F is a harmonic homogeneous polynomial of degree g on Rn+2

with
∣∣gradE F

∣∣2 = g2r2g−2,

where the gradE F is the Euclidean gradient and r(X) = |X|.
Münzner’s work on isoparametric hypersurfaces in spheres. In the papers
[10][11], an important generalization of Cartan’s work was produced on isoparametric
hypersurface in sphere in 1973 by Münzner. Without assuming that the multiplicities
are all the same, he proved that the possibilities for the number g are 1, 2, 3, 4 and
6 ([14]). Moreover he obtained the following.

If M is a connected oriented isoparametric hypersurface embedded in Sn+1 with
g distinct principal curvatures, there exists a homogeneous polynomial F of degree
g on Rn+2 such that M is an open subset of a level set of the restriction of F to
Sn+1 satisfying the following Cartan-Münzner differential equations,

∣∣gradE F
∣∣2 = g2r2g−2(1)

∆EF = crg−2,(2)

where r(X) = |X|, c = g2(m2 − m1)/2, and m1,m2 are the two possible distinct
multiplicities of the principal curvatures. If all the multiplicities are equal, then c = 0
and F is harmonic on Rn+2. Therefore this generalizes the work of Cartan on the
case g = 3 where all multiplicities are equal and F is harmonic. The homogeneous
polynomial F satisfying Cartan-Münzer differential equations is called a Cartan-
Münzner polynomial.

Conversely, the level sets of the restriction F |Sn+1 of F satisfying (1) and (2)
constitute an isoparametric family of hypersurfaces. Münzner also proved that if M
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is an isoparametric hypersurfaces with principal curvatures cot θi, 0 < θ1 < . . . <

θg < π, with multiplicities mi, then

θk = θ1 +
k − 1

g
π, 1 ≤ k ≤ g,

and the multiplicities satisfy mi = mi+2 (subscripts mod g). Therefore, if g is odd,
then all of the multiplicities must be equal and if g is even, there are at most two
distinct multiplicities.

Remark. Moreover, by [1], [10] and [11] we know (1) if g = 3, then m1 = m2 =
m3 = 1, 2, 4 or 8, (2) if g = 4, then m1 = m3, m2 = m4, and m1, m2 are 1 or even,
(3) if g = 6, then m1 = m2 = ... = m6 = 1 or 2.

3. Homogeneous Functions on Quaternionic Vector Spaces

Homogeneous functions on Rn+2 and Sn+1. In this section, by following [8], we
review computation of the gradient and the Laplacian of a homogeneous function
F on Rn+2 and Sn+1 the unit sphere in Rn+2.

Let F : Rn+2 → R be a homogeneous function of degree g, that is, F (tX) =
tgF (X) for all nonzero t ∈ R and X ∈ Rn+2. Note the homogeneous function
satisfies the following equation by Euler’s theorem for X ∈ Rn+2

(3)
〈
X, gradE F

〉
= gF (X).

If F is an isoparametric function defined on a Euclidean space Rn+2, the restric-
tion of F to the unit sphere Sn+1 is also isoparametric by the following theorem.

Theorem 1. For a homogeneous function F : Rn+2 → R of degree g, we have
∣∣gradS F

∣∣2 =
∣∣gradE F

∣∣2 − g2F 2

∆SF = ∆EF − g(g − 1)F − g(n + 1)F.

Here, gradS F is the gradient of the restriction of F to the unit sphere Sn+1. Simi-
larly, ∆EF and ∆SF denote the Laplacian of F on Rn+2 and the unit sphere Sn+1

respectively.

Proof. (1) Let X ∈ Sn+1. Since X is a position vector of the unit sphere Sn+1,
gradS F can be written by

(4) gradS F = gradE F − 〈
gradE F, X

〉
X.
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Using (3),

∣∣gradS F
∣∣2 =

〈
gradE F − 〈

gradE F, X
〉
X, gradE F − 〈

gradE F, X
〉
X

〉

=
∣∣gradS F

∣∣2 − 2gF (X)
〈
gradE F, X

〉
X + g2F 2(X) |X|2

=
∣∣gradS F

∣∣2 − g2F 2(X)

(2) Let ∇E and ∇S denote the Levi-Civita connections on Rn+2 and Sn+1 re-
spectively. Then ∆SF is the trace of the operator on TXSn+1 given by

TXSn+1 −→ TXSn+1

V 7−→ ∇S
V gradS F.

For an orthonormal basis {V1, . . . , Vn+1} for TXSn+1,

∆SF =
n+1∑

i=1

〈∇S
Vi

gradS F, Vi

〉
=

n+1∑

i=1

〈∇E
Vi

gradS F − 〈∇E
Vi

gradS F,X
〉
X, Vi

〉

=
n+1∑

i=1

〈∇E
Vi

gradS F, Vi

〉
=

n+1∑

i=1

〈∇E
Vi

(gradE F − gFX), Vi

〉

Here we use 〈Vi, X〉 = 0 and gradS F = gradE F − gFX by (3) and (4). Since X is
just an identity map on Rn+2, we obtain

∇E
Vi

(gradE F − gFX) = ∇E
Vi

gradE F − ∇E
Vi

(gFX)

= ∇E
Vi

gradE F − gVi(F )X − gFVi.

Therefore,

n+1∑

i=1

〈∇E
Vi

(gradE F − gFX), Vi

〉
=

n+1∑

i=1

〈∇E
Vi

gradE F − gVi(F )X − gFVi, Vi

〉

=
n+1∑

i=1

(〈∇E
Vi

gradE F, Vi

〉− gF
)

=
n+1∑

i=1

〈∇E
Vi

gradE F, Vi

〉− g(n + 1)F.

Thus we have

∆SF =
n+1∑

i=1

〈∇E
Vi

gradE F, Vi

〉− g(n + 1)F .
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Now we compute the Laplacian ∆EF for the orthonormal basis {V1, . . . , Vn+1, X}
for TXRn+2 by applying the above identity and Euler theorem.

∆EF =
n+1∑

i=1

〈∇E
Vi

gradE F, Vi

〉
+

〈∇E
X gradE F,X

〉

=
n+1∑

i=1

〈∇E
Vi

gradE F, Vi

〉
+∇E

X

〈
gradE F,X

〉− 〈
gradE F, X

〉

=
n+1∑

i=1

〈∇E
Vi

gradE F, Vi

〉
+ g(g − 1)F

= ∆SF + g(n + 1)F + g(g − 1)F

¤
Remark. When the homogeneous polynomial F of degree g satisfying the Cartan-
Münzner differential equations, we conclude the followings. Notice that Im(F |Sn+1) ⊂
[−1, 1], in fact the image ranges exactly the whole compact connected set [−1, 1].
We can consider a level set Mc of F |Sn+1 defined by

Mc :=
{
X ∈ Sn+1 | F (X) = c

}
= (F |Sn+1)−1 (c), c ∈ [−1, 1] .

Then Mc (c ∈ (−1, 1)) is an isoparametric hypersurface, while M1 = (F |Sn+1)−1 (1)
and M−1 = (F |Sn+1)−1 (−1) are focal submanifolds. In other words, we can denote
the level set by

Mt =
{
X ∈ Sn+1|F (X) = cos gt

}
, t ∈ [0,

π

g
],

where M0 and Mπ/g are two focal submanifolds and for t ∈ (0, π
g ), Mt is an isopara-

metric hypersurface.

Quaternionic vector spaces and quaternionic projective spaces. Each ele-
ment of H quaternions can be represented as

q = a + bi + cj + dk ∈ H

with a, b, c, d ∈ R, and the quaternion multiplication is determined by i2 = j2 =
k2 = ijk = −1. The standard conjugate of q which is denoted by q̄ is the quaternion
number q̄ := a− bi− cj − dk. Moreover, we define the norm of q as |q| := qq̄. It is
well known that H is one of the composition algebras satisfying |q1q2| = |q1| |q2| for
q1, q2 ∈ H. If q ∈ C, the complex number, then q̄ is the ordinary complex conjugate
of q, and if q ∈ R, q̄ = q.
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On the other hand, if we regard the field of complex number C spanned by {1, k},
we can also present the quaternion number q as

q = z + wi, for z = a + dk, w = b + ck, where z, w ∈ C = span {1, k} .

From this, define another conjugate q̃ of q by

q̃ = z̃ + wi := z̄ + wi,

where z̄ is the conjugate on C = span {1, k} . Moreover, for an n × m matrices
A = (aij) ∈ Mn×m (H), we define Ã by Ã := (ãij)t = (ãji). Then the conjugation
gives us the following lemma.

Lemma 2. For q1, q2 ∈ H,
(1) q̃1 + q2 = q̃1 + q̃2, q̃1q2 = q̃2q̃1

(2) |q̃1| = |q1|
(3) ÃB = B̃Ã for A ∈ Mn×m(H), B ∈ Mm×l(H)
(4) For A ∈ Mn×m(C) with C = span {1, k}, Ã = A∗ where A∗ = Āt

Now we recall the construction of the quaternionic projective space by Hopf
fibration. We consider a 4 (n + 1)-dimensional quaternionic space over R

Hn+1f = {q = (q0, . . . qn)|qi ∈ H, i = 0, . . . , n}

which is also a right H-module, that is, for λ ∈ H, q = (q0, . . . , qn) ∈ Hn+1,

q · λ := (q0λ, . . . qnλ) ∈ Hn+1.

And the unit sphere S4n+3 in Hn+1 is defined as

S4n+3 :=

{
q = (q0, . . . , qn) ∈ Hn+1 | |q|2 =

n∑

i=0

|qi|2 = 1

}
.

The quaternionic projective n-space HPn is obtained as the quotient of the unit
sphere S4n+3 by the right Sp(1)(= S3)-action, that is, HPn ∼= S4n+3/S3. Note that
U(n + 1) acts on Hn+1 and S4n+3 by the matrix multiplication

U(n + 1)×Hn+1 −→ Hn+1

(A, q) 7−→ A · q := Aq

where q is represented as column matrix. Moreover, U(n + 1) also acts on HPn by
(A, [q]) 7→ [Aq], where A ∈ U(n + 1), [q] ∈ HPn. Here [q] ∈ HPn is related to
q ∈ Hn+1 via Hopf fibration.
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Homogeneous functions on quaternionic vector spaces. In this subsection
we construct a homogeneous function F on Hn+1 which is invariant under Sp(1)
and U(n + 1). Furthermore we will induce F̃ from F which is defined on the HPn

that also invariant under those.
Define a function F on Hn+1 by

F : Hn+1 −→ R
q 7−→ F (q) := |q̃q|2 = |∑n

i=0 q̃iqi|2 ,

where the column vector q = (q0, . . . , qn)t ∈ Hn+1 and q̃ := (q̃0, . . . , q̃n) which is the
conjugate transpose of q.

Lemma 3. For the function F defined on Hn+1,
(1) F is invariant under Sp(1) = S3 and U(n + 1).
(2) F is a homogeneous function of degree 4.

Proof (1) Let λ ∈ S3, A ∈ U(n + 1), and q ∈ Hn+1 the column vector. Using
lemma2,

F (A · q · λ) = F (Aqλ) =
∣∣∣(̃Aqλ)Aqλ

∣∣∣
2

=
∣∣∣λ̃q̃ÃAqλ

∣∣∣
2

=
∣∣∣λ̃q̃A∗Aqλ

∣∣∣
2

=
∣∣∣λ̃

∣∣∣
2
|q̃q|2 |λ|2

= F (q),

we complete the proof of (1).
(2) For t ∈ R, q ∈ Hn+1, t̃q = tq̃ and tq = qt obviously. Therefore

F (tq) =
∣∣∣(̃tq)tq

∣∣∣
2

= |tq̃tq|2 =
∣∣t2q̃q∣∣2 = t4F (q).

¤
Remark. Notice that the restriction of F to the unit sphere S4n+3 is also a ho-
mogeneous function of degree 4 and invariant under the action of Sp(1) = S3 and
U(n + 1).

Now we induce a homogeneous function F̃ on HPn with the following diagram.

F : S4n+3 −→ R
S3 ↓ ª q

F̃ : HPn −→ R
[q] 7−→ F̃ ([z]) := |q̃q|2,
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[q] is corresponding to q ∈ S4n+3. Using the same procedure, we get that F̃ is
homogeneous with degree 4 and U(n + 1)-invariant. Moreover, if q = (q0, . . . , qn)t ∈
S4n+3,

0 ≤ |q̃q|2 =

∣∣∣∣∣
n∑

i=0

q̃iqi

∣∣∣∣∣
2

≤
(

n∑

i=0

|q̃iqi|
)2

=

(
n∑

i=0

|qi|2
)2

= 1,

thus both of the images of the restriction F |S4n+3 and F̃ are the closed unit interval
[0, 1] in fact exactly [0, 1].

The isoparametric function on S4n+3. In this subsection we prove our homoge-
neous function F on the unit sphere S4n+3 is isoparametric on S4n+3.

Theorem 4. The homogeneous function F (q) = |q̃q|2 on the unit sphere S4n+3 =
{q ∈ Hn+1| |q| = 1} satisfies

∣∣gradS F
∣∣2 = 16F (1− F ), ∆SF = 24− 12F − 4(n + 1)F,

therefore F is isoparametric on the sphere S4n+3.

Proof. The column vector q = (q0, . . . , qn)t ∈ Hn+1 can be denoted as

q = z + wi, z, w ∈ Cn+1

where C = span {1, k}. And we can write

F (q) = |q̃q|2 =
(|z|2 − |w|2)2 + 4 |z∗w|2 ,

where the standard real inner product in Cn+1 is given by

〈x, y〉 := Re (x∗y) , x, y ∈ Cn+1.

Here we consider x, y ∈ Cn+1 as vectors in R2n+2. We also denote Im (x∗y) as
−ω (z, w) which is a skew symmetric form on R2n+2, and we write

z∗w = (〈a, c〉+ 〈b, d〉)− (〈b, c〉 − 〈a, d〉) k

= Re (z∗w) + Im (z∗w) k

= 〈z, w〉 − ω (z, w) k, where z = a + dk, w = c + dk, a, b, c, d ∈ Rn+1.

Then

∂F

∂ai
= 2

(
|a|2 + |b|2 − |c|2 − |d|2

)
2ai + 8 〈z, w〉 ci + 8ω (z, w) (−di)
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∂F

∂bi
= 2

(
|a|2 + |b|2 − |c|2 − |d|2

)
2bi + 8 〈z, w〉 di + 8ω (z, w) ci

∂F

∂ci
= 2

(
|a|2 + |b|2 − |c|2 − |d|2

)
2ci + 8 〈z, w〉 ai + 8ω (z, w) bi

∂F

∂di
= 2

(
|a|2 + |b|2 − |c|2 − |d|2

)
2di + 8 〈z, w〉 bi + 8ω (z, w) (−ai)

and

∂2F

∂a2
i

= 4
(
|a|2 + |b|2 − |c|2 − |d|2

)
+ 8

(
a2

i + c2
i + d2

i

)

∂2F

∂b2
i

= 4
(
|a|2 + |b|2 − |c|2 − |d|2

)
+ 8

(
b2
i + c2

i + d2
i

)

∂2F

∂c2
i

= 4
(
|a|2 + |b|2 − |c|2 − |d|2

)
+ 8

(
a2

i + b2
i + c2

i

)

∂2F

∂d2
i

= 4
(
|a|2 + |b|2 − |c|2 − |d|2

)
+ 8

(
a2

i + b2
i + d2

i

)
.

Therefore, we obtain
∣∣gradE F

∣∣2 = 16 |q|2 F, ∆EF = 24 |q|2 .

Using Theorem 1, we get
∣∣gradS F

∣∣2 =
∣∣gradE F

∣∣2 − 42F 2 = 16F (1− F ) ,

∆SF = ∆EF − 4 (4− 1)F − 4 (n + 1) F = 24− 12F − 4 (n + 1)F

since F is homogeneous of degree 4. ¤

Remark. Theorem 4 extends Nomizu’s work ([12]) on construction of isoparametric
function on S2n+1 =

{
z ∈ Cn+1| |z| = 1

}
by

h(z) =
∣∣ztz

∣∣2 =
(
|x|2 − |y|2

)2
+ 4 〈x, y〉2 , for z = x + iy , x, y ∈ Rn+1.

The function h (z) is invariant under the actions of U (1) = S1 and O (n + 1). More-
over, it is an isoparametric function indeed since it satisfies

∣∣gradS h
∣∣2 = 16h (1− h) , ∆Sh = 16− 12h− 4 (n + 1)h,

by correcting the computation of the Laplacian of h in [12]. In [12], he showed that
h induces isoparametric hypersurfaces in S2n+1 of g = 4 with multiplicities 1, 1,
n− 1, n− 1.
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By above Theorem4, the homogeneous function does not satisfy Cartan-Münzner
differential equations. In the following theorem, we show that the isoparametric
function gives a family of isoparametric hypersurfaces with g = 4.

Theorem 5. For the above isoparametric function F , the level sets Mt forms the
isoparametric family of hypersurfaces in S4n+3 with four distinct principal curvatures
with multiplicities 2, 2, 2n− 1, 2n− 1.

Proof. By Münzner [10], the hypersurface Mt in the sphere can have only g =
1, 2, 3, 4 or 6 distinct principal curvatures. We consider the preimage of F at zero
which is a focal set in S4n+3. For the preimage of F at zero, we have

0 = |q̃q|2 =
∣∣(z̄t + wti

)
(z + wi)

∣∣2 =
∣∣∣|z|2 − |w|2 + 2z∗wi

∣∣∣
2
,

and that we get |z| = |w| and z∗w = 0. Since |q|2 = |z|2+|w|2 = 1, F−1(0) consists of
ordered orthogonal complex vectors in Cn+1 of length 1/2. In other words, F−1(0) in
S4n+3 is equivalently U(n+1)

U(n−1) a complex Stiefel manifold of all orthogonal pairs of
vectors in Cn+1 which has dimension 4n.

Therefore each isoparametric hypersurface of dimension 4n + 2 has one principal
curvature with multiplicity 2. By dimension counting according to Remark 2, we
conclude g = 4. In particular, the four distinct principal curvature of isoparametric
hypersurfaces in consideration have multiplicities 2, 2, 2n− 1, 2n− 1. ¤

Remark.
1. In [13], Park showed that the possible g in S4n+3 are only 2 and 4. Since we

show that a focal set F−1(0) is not a sphere, we exclude the case g = 2 so that we
conclude g = 4.

2. The preimage F−1(1) which is the other focal set and the isoparametric hy-
persurface F−1(t), t ∈ (0, 1) are homogeneous spaces. Identifying these spaces is
an interesting question related to Veronese imbedding of complex projective spaces.
We will explain it in another paper.

A complex projective space CPn is obtained from the Hopf fibration π of the
unit sphere S2n+1 by the unit sphere S1. The isoparametric hypersurface M in CPn

has constant principal curvatures if and only if M is homogeneous([9]). Moreover,
a hypersurface M in CPn is isoparametric if and only if its inverse image π−1(M)
under the well known Hopf map is isoparametric in S2n+1([15]). Similar study on
quaternionic projective space HPn such as [13] is also very interesting. By applying
the study in [13], we also obtain the following corollary.
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Corollary 6. By Hopf fibration on S4n+3 to HPn, the isoparametric hypersur-
faces in S4n+3 given by F induce a family of isoparametric hypersurfaces in HPn

having g = 5 with multiplicities 3, 2, 2, 2n − 4, 2n − 4. By Hopf fibration on
S4n+3 to CP 2n+1, the isoparametric hypersurfaces in S4n+3 given by F give a fam-
ily of isoparametric hypersurfaces in CP 2n+1 having g = 5 with multiplicities 1, 2,
2, 2n− 2, 2n− 2.

Proof. According to the study in [13] , we can easily conclude F induces a family of
isoparametric hypersurfaces in HPn having g = 5 with multiplicities 3, 2, 2, 2n− 4,
2n− 4 because F gives family of isoparametric hypersurfaces in S4n+3 with g = 4 of
multiplicities 2, 2, 2n − 1, 2n − 1. Here, we observe S3-action on S4n+3 is non-
trivial for the principal distributions with the multiplicities with 2n− 1 and trivial
for the principal distributions with the multiplicities with 2. Since the S1(⊂ S3)-
action of Hopf fibration also has the similar properties, we get F induces a family
of isoparametric hypersurfaces in CP 2n+1 having g = 5 with multiplicities 1, 2, 2,
2n− 2, 2n− 2. ¤

Remark. With similar argument, we also know that the homogeneous function
S2n+1 of Nomizu in Remark in the Therorem 4 produces a family of isoparametric
hypersurfaces in CPn having g = 5 with multiplicities 1, 1, 1, n− 2, n− 2.
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