참고문헌
- Aleotti, P. and Chowdhury, R. (1999), Landslide hazard assessment: summary review and new perspectives, Bulletin of Engineering Geology and the Environment, Vol. 58, No. 1, pp. 21-44. https://doi.org/10.1007/s100640050066
- Ayalew, L., Yamagishi, H., Marui, H. and Kanno, T. (2005), Landslides in sado island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications, Engineering Geology, Vol. 81, No. 4, pp. 432-445. https://doi.org/10.1016/j.enggeo.2005.08.004
- Carrara, A. (1983), A multivariate model for landslide hazard evaluation, Mathematical Geology, Vol. 15, No. 3, pp. 403-426. https://doi.org/10.1007/BF01031290
- Chung, C. F., Fabbri, A. G. and van Westen, C. J. (1995), Multivariate regression analysis for landslide hazard zonation, Geographical Information Systems in Assessing Natural Hazards, Vol. 5, No. 1, pp. 135-175. https://doi.org/10.1007/978-94-015-8404-3_8
- Dai, F. C. and Lee, C. F. (2002), Landslide characteristics and slope instability modeling using GIS, Lantau island, Hong kong, Geomorphology, Vol. 42, No. 3-4, pp. 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3
- Dai, F. C., Lee, C. F., Li, J. and Xu, Z. W. (2001), Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong, Environmental Geology, Vol. 43, No. 3, pp. 381-391.
- Ercanoglu, M. and Gokceoglu, C. (2004), Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey), Engineering Geology, Vol. 75, No. 3-4, pp. 229-250. https://doi.org/10.1016/j.enggeo.2004.06.001
- Guzzetti, F., Carrara, A., Cardinalli, M. and Reichenbach, P. (1999), Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, Vol. 31, No.1-4, pp. 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1
- Hagan, M. T., Demuth, H. B. and Beale, M. (1996), Neural network design, Boston: PWS Publishing. pp. 4-26.
- Jensen, J. R., Qiu, F. and Ji, M. (1999), Predictive modeling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensing data, International Journal of Remote Sensing, Vol. 20, No. 14, pp. 2805-2822. https://doi.org/10.1080/014311699211804
- Kavzoglu, T. (2001), An investigation of the design and use of feedforward artificial neural networks in the classification of remotely sensed images, PhD thesis, University of Nottingham, School of Geography, pp. 306.
- Komac, M. (2006), A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia, Geomorphology, Vol. 74, No. 1-4, pp. 17-28. https://doi.org/10.1016/j.geomorph.2005.07.005
- Lee, S. R., Choi, J. W. and Min, K. D. (2004), Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea, International Journal of Remote Sensing, Vol. 25, No. 11, pp. 2037-2052 (in Korean). https://doi.org/10.1080/01431160310001618734
- Lee, S. R. and Min, K. D. (2001), Statistical analysis of landslide susceptibility at Yongin, Korea, Environmental Geology, Vol. 40, No. 9, pp. 1095-1113 (in Korean). https://doi.org/10.1007/s002540100310
- Nielsen, T. H., Wrigth, R. H., Vlasic, T. C. and Spangle, W. E. (1979), Relative slope stability and land-use planning in the San Francisco Bay region, California, US, Geological Survey Professional Paper, Vol. 200, No. 944, pp. 3-23.
- Pradhan, B. and Lee, S. (2010), Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environmental Modelling & Software, Vol. 25, No. 6, pp. 747-759. https://doi.org/10.1016/j.envsoft.2009.10.016
- Saaty, T. L. (1980), The analytic hierarchy process, McGraw-Hill, pp. 11-76.
- Sun, P., Wang, G. C. and Cao, B. L. (2002), Research on the debris flows hazard in the tourist area of Changbai mountain, World geology, Vol. 21, No. 2, pp. 64-67.
- van Westen, C. J. (1997), Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide, ITC Publication, Enschede, pp. 73-84.
- Wang, H. and Cao, B. L. (2004), Research on influence factors of collapse-slide in tourist area of Changbai mountain, World geology, Vol. 23, No. 1, pp. 58-61.
- Yalcin, A. (2008), GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey); Comparisons of results and confirmations, Catena, Vol. 72, No. 1, pp. 1-12. https://doi.org/10.1016/j.catena.2007.01.003
- Yalcina, A., Reisb, S., Aydinogluc, A. C. and Yomralioglu, T. (2011), A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey, CATENA, Vol. 85, No. 3, pp. 274-287. https://doi.org/10.1016/j.catena.2011.01.014
- Yesilnacar, E. and Topal, T. (2005), Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, Vol. 79, No. 3-4, pp. 251-266. https://doi.org/10.1016/j.enggeo.2005.02.002
피인용 문헌
- Spatial Predictions of Debris Flow Susceptibility Mapping Using Convolutional Neural Networks in Jilin Province, China vol.12, pp.8, 2014, https://doi.org/10.3390/w12082079