DOI QR코드

DOI QR Code

Desorption Characteristics of Cobalt, Strontium, and Cesium in Natural Soil and Kaolin Using CMCD

CMCD를 이용한 자연토양 및 카올린에서의 코발트, 스트론튬, 세슘의 탈착 특성

  • Choi, Jeonghak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Cheon, Kyeongho (Technology Research Lab., KOLON GLOBAL CORP.)
  • Received : 2014.08.27
  • Accepted : 2014.11.04
  • Published : 2014.12.01

Abstract

Carboxymethyl-${\beta}$-cyclodextrin (${\beta}$-CMCD), as a biodegradable surfactant with hydrophobic and hydrophilic properties, has potential advantages of being applicable to the simultaneous treatment of multiple contaminated soils. In this study, the desorption behaviors of r adionuclides such as cobalt (Co), strontium (Sr), and cesium (Cs) from the soil contaminated with them were experimentally investigated and the effectiveness of CMCD as a desorbent was evaluated. The desorption equilibrium of used radionuclides could be achieved within 1~3 hr and the desorption ratio from kaolin was higher than that from natural soil. The addition of CMCD of 2 g/L increased the desorption ratio by 5~20 % and the desorption ratio of used r adionuclides was shown in the order of Co > Cs > Sr. The experimental desorption data were fitted successfully by pseudo-second order kinetic model and the desorption rate of the r adionuclides was shown in the order of Cs > Co > Sr. Hysteresis between adsorption and desorption of the r adionuclides, as shown in the order of Sr > Co > Cs, increased as the desorption rate decreased. Consequently, it could be considered that the desorption rate was one of the significant factors of the hysteresis. The addition of CMCD as desorbent increased the amount of desorbed radionuclides and decreased the hysteresis. However, the CMCD could not completely desorb the radionuclides from soils even though the excess of CMCD was added.

Carboxymethyl-${\beta}$-cyclodextrin(${\beta}$-CMCD)은 소수성과 친수성의 성질을 모두 가지고 있는 생분해성 계면활성제로 복합오염토양의 동시 처리에 적용이 가능한 장점이 있다. 본 연구에서는 코발트(Co), 스트론튬(Sr) 및 세슘(Cs) 등의 방사성 핵종 중금속으로 오염된 토양에서 이들의 탈착 거동을 살펴보고, 탈착제로서 CMCD의 효과를 평가하였다. 탈착속도 실험에서 Co, Sr 및 Cs 모두 1~3시간 이내에 탈착평형에 도달하였으며, 카올린에서의 탈착률이 자연토양에서 보다 높게 나타났다. 또한 탈착용액으로 CMCD를 2 g/L를 첨가한 경우 탈착률이 5~20 %가량 증가하였으며, 핵종 중금속별 탈착률은 Co > Cs > Sr 순으로 나타났다. 탈착실험 결과를 다양한 탈착속도 모델에 적용한 결과, pseudo-second order kinetic model을 가장 잘 따르는 것으로 나타났으며, 탈착속도는 Cs > Co > Sr 순으로 나타났다. 흡/탈착 간 이력현상은 Sr > Co > Cs 순으로 탈착속도가 느릴수록 이력현상이 커지는 것으로 나타나, 탈착속도가 흡/탈착 간 이력현상을 야기하는 주요 요인 중 하나로 판단되었다. CMCD의 주입으로 탈착량이 증가하고 흡/탈착 간 이력현상이 감소하는 효과를 보였으나, 과량 주입 시에도 토양에 흡착된 핵종 중금속을 완전히 탈착시키지는 못하는 것으로 평가되었다.

Keywords

References

  1. Brusseau, M. L., Wang, X. and Wang, W. Z. (1997), Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin, Environmental Science & Technology, Vol. 31, No. 4, pp. 1087-1092. https://doi.org/10.1021/es960612c
  2. Ding, D., Lei, Z., Yang, Y., Feng, C. and Zhang, Z. (2014), Selective removal of cesium from aqueous solutions with nickel(II) hexacyanoferrate(II) functionalized agricultural residue-walnut shell, Journal of Hazardous Materials, Vol. 270, pp. 187-195. https://doi.org/10.1016/j.jhazmat.2014.01.056
  3. Gil-García, C. J., Rigol, A., Rauret, G. and Vidal, M. (2008), Radionuclide sorption-desorption pattern in soils from Spain, Applied Radiation and Isotopes, Vol. 66, No. 2, pp. 126-138. https://doi.org/10.1016/j.apradiso.2007.07.032
  4. Ho, Y. S. and McKay, G. (1998), Sorption of dye from aqueous solution by peat, Chemical Engineering Journal, Vol. 70, No. 2, pp. 115-124. https://doi.org/10.1016/S0923-0467(98)00076-1
  5. Hu, B., Fugetsu, B., Yu, H. and Abe, Y. (2012), Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, Journal of Hazardous Materials, Vol. 217, pp. 85-91.
  6. Huang, W. and Weber, W. J., Jr. (1997), A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains, Environmental Science & Technology, Vol. 31, No. 9, pp. 2562-2569. https://doi.org/10.1021/es960995e
  7. Jiang, Y., Zhang, H., Li, H., Wu, M., Zhang, S. and Wang, J. (2004), Studies on novel functional $\beta$-cyclodextrin and its metal complexes, Journal of Molecular Structure, Vol. 702, No.1-3, pp. 33-37. https://doi.org/10.1016/j.molstruc.2004.06.006
  8. Lagergren, S. (1898), Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, Vol. 24, No. 4, pp. 1-39.
  9. Liu, X., Chen, G. R., Lee, D. J., Kawamoto, T., Tanaka, H. and Chen, M. L. (2014), Bioresource technology, Vol. 160, pp. 142-149 https://doi.org/10.1016/j.biortech.2014.01.012
  10. Mohanambe, L. and Vasudevan, S. (2005), Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations, Langmuir, Vol. 21, No. 23, pp. 10735-10742. https://doi.org/10.1021/la050628t
  11. Nzengung, V. A., Nkedi-Kizza, P., Jessup, R. E. and Voudrias, E. A. (1997), Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays, Environmental Science & Technology, Vol. 31, No. 5, pp. 1470-1475. https://doi.org/10.1021/es960720z
  12. Sar, P., Kazy, S. K. and D'Souza, S. F. (2004) Radionuclide remediation using a bacterial biosorbent, International Biodeterioration & Biodegradation, Vol. 54, No. 2-3, pp. 193-202. https://doi.org/10.1016/j.ibiod.2004.05.004
  13. Schultz, M. F., Benjamin, M. M. and Ferguson, J. F. (1987), Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the regenerated solid, Environmental Science & Technology, Vol. 21, No. 9, pp. 863-869. https://doi.org/10.1021/es00163a003
  14. Shahwan, T., Erten, H. N., Black, L. and Allen, G. C. (1999), TOF-SIMS study of $Cs^{+}$ sorption on natural kaolinite, Science of The Total Environment, Vol. 226, No. 2-3, pp. 255-260. https://doi.org/10.1016/S0048-9697(98)00405-7
  15. Skold, M. E., Thyne, G. D., Drexler, J. W. and McCray, J. E. (2009), Solubility enhancement of seven metal contaminants using carboxymethyl-$\beta$-cyclodextrin (CMCD), Journal of Contaminant Hydrology, Vol. 107, No. 3-4, pp. 108-113. https://doi.org/10.1016/j.jconhyd.2009.04.006
  16. Strawn, D. G. and Sparks, D. L. (2000), Effects of soil organic matter on the kinetics and mechanisms of Pb(II) sorption and desorption in soil, Soil Science Society of America Journal, Vol. 64, No. 1, pp. 144-156. https://doi.org/10.2136/sssaj2000.641144x
  17. Verburg, K. and Baveye, P. (1994), Hysteresis in the binary exchange of cations on 2:1 clay minerals: a critical review, Clays and Clay Minerals, Vol. 42, No. 2, pp. 207-220. https://doi.org/10.1346/CCMN.1994.0420211
  18. Wang, X. and Brusseau, M. L. (1995), Simultaneous complexation of organic compounds and heavy metals by modified cyclodextrin, Environmental Science & Technology, Vol. 29, No. 10, pp. 2632-2635. https://doi.org/10.1021/es00010a026
  19. Wang, X., Yolcubal, I., Wang, W., Artiola, J., Maier, R. and Breusseau, M. (2004), Use of cyclodextrin and calcium chloride for enhanced removal of mercury from soil, Environmental Toxicology and Chemistry, Vol. 23, No. 8, pp. 1888-1892. https://doi.org/10.1897/03-379
  20. Weber, W. J., Jr., Huang, W. and Yu, H. (1998), Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments : 2. Effects of soil organic matter heterogeneity, Journal of Contaminant Hydrology, Vol. 31, No. 1-2, pp. 149-165. https://doi.org/10.1016/S0169-7722(97)00059-4
  21. Willms, C., Li, Z., Allen, L. and Evans, C. V. (2004), Desorption of cesium from kaolinite and illite using alkylammonium salts, Applied Clay Science, Vol. 25, No. 3-4, pp. 125-133. https://doi.org/10.1016/j.clay.2003.10.001