An approach to improving the James-Stein estimator shrinking towards projection vectors ${ }^{\dagger}$

Tae Ryong Park ${ }^{1}$. Hoh Yoo Baek ${ }^{2}$
${ }^{1}$ Department of Computer Engineering, Seokyeong University
${ }^{2}$ Division of Mathematics and Informational Statistics, Wonkwang University

Received 23 August 2014, revised 12 October 2014, accepted 17 October 2014

Abstract

Consider a p-variate normal distribution $\left(p-q \geq 3, q=\operatorname{rank}\left(P_{V}\right)\right.$ with a projection matrix P_{V}). Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the James-Stein estimator shrinking towards projection vectors under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or $\sum=\sigma^{2} \boldsymbol{I}$ for an unknown scalar σ^{2}.

Keywords: Generalized Bayes estimator, James-Stein estimator, normal distribution, projection vectors, quadratic loss.

1. Introduction

Let $\boldsymbol{X}=\left(X_{1}, \cdots, X_{p}\right)^{\prime}$ be a p-variate random vector normally distributed with unknown mean θ and the identity covariance matrix \boldsymbol{I}. Then we consider the problem of estimating θ by $\delta(\boldsymbol{X})$ relative to the quadratic loss function $\|\delta(\boldsymbol{X})-\theta\|^{2}=(\delta(\boldsymbol{X})-\theta)^{\prime}(\delta(\boldsymbol{X})-\theta)$. Every estimator will be evaluated by the risk function $R(\theta, \delta(\boldsymbol{X}))=E\left[\|\delta(\boldsymbol{X})-\theta\|^{2}\right]$.

Stein (1956) showed that the usual estimator \boldsymbol{X} is inadmissible for $p \geq 3$ and James and Stein (1961) constructed the improved estimator, $\delta_{1}^{J S}=\left(1-(p-2) /\|\boldsymbol{X}\|^{2}\right) \boldsymbol{X}$. Also, Casella and Hwang (1987) has proposed the another improved estimator $\delta_{1}^{S H}=P_{V} \boldsymbol{X}+(1-$ $\left.(p-q-2) /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)$ where P_{V} is an idempotent and projection matrix and $\operatorname{rank}\left(P_{V}\right)=q . \boldsymbol{X}$ is dominated by $\delta_{1}^{S H}$ for $p-q \geq 3$. With the similar process of Baranchick (1964), we can construct the positive part estimator $\delta_{1}^{+S H}=P_{V} \boldsymbol{X}$ if $\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq p-q-2$; $\delta_{1}^{+S H}=\delta_{1}^{S H}$, otherwise, and we can show that $\delta_{1}^{+S H}$ has a smaller risk than $\delta_{1}^{S H}$ by Baranchik's (1964) method. This is known as an estimator eliminating undesirable properties of $\delta_{1}^{S H}$ that it has singularity at $\left(P_{V} \boldsymbol{X}\right)_{i}$ and changes the sign of each $X_{i}-\left(P_{V} \boldsymbol{X}\right)_{i}$ for $\left\|X-P_{V} \boldsymbol{X}\right\|^{2} \leq p-q-2$. However, $\delta_{1}^{+S H}$ itself is unsatisfactory for θ must be estimated by a projection vector $P_{V} \boldsymbol{X}$ when $\left\|X-P_{V} \boldsymbol{X}\right\|^{2} \leq p-q-2$. Of course, it is known that such a truncated estimator is inadmissible.

[^0]In this paper we propose a generalized Bayes estimator dominating $\delta_{1}^{S H}$ based on the ideas used in Brown (1968), Brewster and Zidek (1974), and Park and Baek(2011) for estimating a normal variance. In Section 2, such a smooth estimator is derived and it is shown to be admissible. It should be noted that this admissible estimator dominating $\delta_{1}^{S H}$ is just identical to the generalized Bayes estimator given by Strawderman (1971), Casella and Hwang(1987), and Berger (1976) with $a(=c)=2$. Section 3 discusses the cases where the covariance matrix \sum of \boldsymbol{X} is fully unknown or $\sum=\sigma^{2} \boldsymbol{I}$ for an unknown scalar σ^{2}.

2. Admissible estimator dominating $\delta_{1}^{S H}$

To improve on $\delta_{1}^{S H}$, we consider the estimator

$$
\delta_{1}(c, r)= \begin{cases}P_{V} \boldsymbol{X}+\left(1-c /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right), & \text { if }\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r \tag{2.1}\\ \delta_{1}^{S H}, & \text { otherwise },\end{cases}
$$

where c and r are positive constants. For a fixed r, we shall find the best $c=c(r)$ in the sense of minimizing the risk. Such an idea is due to Brown (1968) which constructed an improved estimator for a normal variance. Let $\lambda=\left\|\boldsymbol{\theta}-P_{V} \boldsymbol{\theta}\right\| / 2$ and $f_{p-q}(t ; \lambda)$ denote the density of a noncentral chi square random variable with the degrees of freedom $p-q$ and the noncentrality λ. Letting

$$
\begin{equation*}
c_{1}(r, \lambda)=p-q-2-2 f_{p-q}(r ; \lambda) / \int_{0}^{r} t^{-1} f_{p-q}(t ; \lambda) d t \tag{2.2}
\end{equation*}
$$

we can obtain the following lemma which will be proved later.
Lemma 2.1 (i) The risk function of $\delta_{1}(c, r)$ is quadratic with respect to c and is minimized at $c=c_{1}(r, \lambda)$.
(ii) $c_{1}(r, \lambda) \leq c_{1}(r ; 0)=c_{1}(r)$, where $c_{1}(r)$ is expressed as
$c_{1}(r)=p-q-2-2\left[\int_{0}^{1} t^{(p-q) / 2-2} \exp \left\{\frac{1}{2}(1-t) r\right\} d t\right]^{-1}$.
(iii) $c_{1}(r)$ is increasing in r and $0<c_{1}(r)<p-q-2$.

Lemma 2.1 implies that for all $\lambda, c_{1}(r)$ is closer to minimizing value of the risk $R\left(\theta, \delta_{1}(c, r)\right)$ than $p-q-2$, so that we obtain the following theorem.
Theorem 2.1 The estimator $\delta_{1}\left(c_{1}(r), r\right)$ dominates $\delta_{1}(p-q-2, r)$ or $\delta_{1}^{S H}$.
Further select $0<r^{\prime}<r$. By the property (iii) of Lemma 2.1 and a similar manner, it can be seen that $\delta_{1}\left(c_{1}(r), r\right)$ is dominated by another estimator of the form

$$
\delta_{1}^{\prime}\left(c_{1}, r^{\prime}, r\right)= \begin{cases}P_{V} \boldsymbol{X}+\left(1-c_{1}\left(r^{\prime}\right) /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right), & \text { if }\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r^{\prime} \tag{2.3}\\ P_{V} \boldsymbol{X}+\left(1-c_{1}(r) /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right), & \text { if } r^{\prime}<\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r \\ \delta_{1}^{S H}, & \text { otherwise. }\end{cases}
$$

Now from the innovative idea of Brewster and Zidek (1974), we select a finite partition of $[0, \infty)$ represented by $0=r_{i, 0}<\cdots<r_{i, n_{i}-1}<r_{i, n_{i}}=\infty$ for each $i=1,2 \cdots$ and a
corresponding estimator

$$
\delta_{1}^{(i)}=P_{V} \boldsymbol{X}+\left(1-c_{1}\left(r_{i j}\right) /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right) \text { if } r_{i, j-1}<\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r_{i j} .
$$

Then, providing $\max _{j}\left|r_{i, j}-r_{i, j-1}\right| \rightarrow 0$ and $r_{i, n_{i-1}} \rightarrow \infty$ as $i \rightarrow \infty$, the sequence $\delta_{1}^{(i)}$ will converge pointwise to δ_{1}^{*}, where

$$
\begin{equation*}
\delta_{1}^{*}=P_{V} \boldsymbol{X}+\left(1-c_{1}\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right) /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right) . \tag{2.4}
\end{equation*}
$$

It should be noted that δ_{1}^{*} is the generalized Bayes estimator given by Strawderman (1971), Berger (1976) with $a(=c)=2$, and Casella and Hwang's (1987) method against the prior density

$$
\pi^{*}(\theta)=\int_{0}^{1}(2 \pi)^{-\frac{p-q}{2}} \lambda^{-2}(\lambda /(1-\lambda))^{\frac{p-q}{2}} \exp \left\{-\frac{1}{2}(\lambda /(1-\lambda))\left\|\theta-P_{V} \boldsymbol{\theta}\right\|^{2}\right\} d \lambda .
$$

Theorem 2.2 The estimator δ_{1}^{*} is an admissible estimator dominating $\delta_{1}^{S H}$.
Proof Since $\delta_{1}^{(i)}$ has uniformly smaller risk than $\delta_{1}^{S H}$ for each i, applying Fatou's lemma gives that δ_{1}^{*} dominates $\delta_{1}^{S H}$. The admissibility follows from the result of Brown and Hwang (1982) for the prior density $\pi^{*}(\theta)$ which satisfies the conditions of (ii) in page 213 of their paper. Hence we get the desired conclusion.
Proof of Lemma 2.1 Let $W=\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}$ and $I(\cdot)$ denote the indicator function. Then for a fixed $r, R\left(\theta, \delta_{1}(c, r)\right)$ is minimized at

$$
\begin{align*}
c & =\frac{E\left[\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{-2}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime}(\boldsymbol{X}-\theta) I\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r\right)\right]}{E\left[\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{-2} I\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} \leq r\right)\right]} \\
& =E\left[\left(1-\frac{\theta^{\prime}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)}{W}\right) I(W \leq r)\right] / E\left[\frac{1}{W} I(W \leq r)\right]=c_{1}^{*}, \tag{2.5}
\end{align*}
$$

so that we shall demonstrate that c_{1}^{*} given by (2.5) is expressed as $c_{1}(r, \lambda)$ given in (2.2). Using the similar calculation by Kim et al. (2002) and Bock (1975) c_{1}^{*} can be represented as

$$
\begin{equation*}
c_{1}^{*}=\frac{E^{J}\left[I_{r}(p-q+2 J)-\frac{2 J}{p-q-2+2 J} I_{r}(p-q-2+2 J)\right]}{E^{J}\left[\frac{1}{p-q-2+2 J} I_{r}(p-q-2+2 J)\right]}, \tag{2.6}
\end{equation*}
$$

where J is a random variable having a Poisson distribution with mean λ and $I_{r}(X)=$ $\int_{0}^{r} f_{\alpha}(x) d x$ for a central chi square density $f_{\alpha}(x)$ with degrees of freedom α. Since $I_{r}(\alpha+2)=$ $-2 f_{\alpha+2}(r)+I_{r}(\alpha)$, we observe that

$$
c_{1}^{*}=p-q-2-2 E^{J}\left[f_{p-q+2 J}(r)\right] / E^{J}\left[(p-q-2+2 J)^{-1} I_{r}(p-q-2+2 J)\right],
$$

which can be rewritten as $c_{1}(r ; \lambda)$ given by (2.2), and we obtain part(i). For part(ii), It is sufficient to show that

$$
\begin{equation*}
f_{p-q}(r, \lambda) / \int_{0}^{r} t^{-1} f_{p-q}(t ; \lambda) d t \geq f_{p-q}(r) / \int_{0}^{r} t^{-1} f_{p-q}(t) d t \tag{2.7}
\end{equation*}
$$

which follows from the fact that $f_{p-q}(t ; \lambda) / f_{p-q}(t)$ is increasing in t. Part(iii) can be easily checked and Lemma 2.1 is proved.

3. The cases of unknown covariance matrices

In this section we extend the result derived in section 2 to the case where covariance matrix is completely unknown or $\Sigma=\sigma^{2} I$ for an unknown scalar σ^{2}. At first, the case of $\Sigma=\sigma^{2} I$ is treated.

Let \boldsymbol{X} and S be a independent random variables with $\boldsymbol{X} \sim N_{p}\left(\theta, \sigma^{2} I\right)$ and $S \sim \sigma^{2} \chi_{n}^{2}$. Here we want to estimate θ under the loss $\left\|\widehat{\theta}-P_{V} \boldsymbol{\theta}\right\|^{2} / \sigma^{2}$. For positive constants c and r, a corresponding estimator to (2.1) is of the form

$$
\delta_{2}(c, r)= \begin{cases}P_{V} \boldsymbol{X}+\left(1-c S /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right)\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right), & \text { if } \frac{\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}}{S} \leq r \tag{3.1}\\ \delta_{2}^{S H}, & \text { otherwise },\end{cases}
$$

where, in this case, the James-Stein estimator shrinking towards a projection vector is given by

$$
\delta_{2}^{S H}=P_{V} \boldsymbol{X}\left\{\left(1-\frac{p-q-2}{n+2}\right) S /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right\}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)
$$

Define $c_{2}(r)$ by

$$
\begin{equation*}
c_{2}(r)=\frac{p-q-2}{n+2}-\frac{2}{n+2}\left[\int_{0}^{1} \frac{(1+r)^{(p+n-q) / 2}}{(1+r z)^{(p+n-q) / 2}} z^{\frac{p-q}{2}-2} d z\right]^{-1} \tag{3.2}
\end{equation*}
$$

Theorem 3.1 The estimator $\delta_{2}\left(c_{2}(r), r\right)$ dominates $\delta_{2}^{S H}$.
Proof Let $\lambda=\left\|\theta-P_{V} \boldsymbol{\theta}\right\|^{2} /\left(2 \sigma^{2}\right)$. Note that the risk function of $\delta_{2}(c, r)$ is minimized at

$$
c_{2}(r ; \lambda)=\frac{E\left[\left(\left(S / \sigma^{2}\right)\left\{1-\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} \theta\right\} /\left\|P_{V} \boldsymbol{X}\right\|^{2}\right) I\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} / S \leq r\right)\right]}{E\left[\left(S / \sigma^{2}\right)^{2}\left(\sigma^{2} /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right) I\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} / S \leq r\right)\right]}
$$

which from (2.6), can be expressed by

$$
\begin{align*}
c_{2}(r ; \lambda) & =\frac{E^{J}\left[\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}}\left\{I_{r v}(p-q+2 J)-\frac{2 J}{p-q-2+2 J} I_{r v}(p-q-2+2 J)\right\} d v\right]}{E^{J}\left[\int_{0}^{\infty} v^{\frac{n}{2}+1} e^{-\frac{v}{2}} \frac{1}{p-q-2+2 J} I_{r v}(p-q-2+2 J) d v\right]} \\
& =\frac{\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}}\left\{(p-q-2) \int_{0}^{r v} w^{-1} f_{p-q}(w ; \lambda) d w-2 f_{p-q}(r v ; \lambda)\right\} d v}{\int_{0}^{\infty} v^{\frac{n}{2}+1} e^{-\frac{v}{2}} \int_{0}^{r v} w^{-1} f_{p-q}(w ; \lambda) d w d v} \tag{3.3}
\end{align*}
$$

By integration by parts,

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\frac{v}{2}}\left\{v^{\frac{n}{2}+1} \int_{0}^{r v} w^{-1} f_{p-q}(w ; \lambda) d w\right\} d v \\
& =(n+2) \int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} \int_{0}^{r v} w^{-1} f_{p-q}(w ; \lambda) d w d v+2 \int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} f_{p-q}(r v ; \lambda) d v
\end{aligned}
$$

so that

$$
\begin{equation*}
c_{2}(r ; \lambda)=(p-q-2-2 H(\lambda)) /(n+2+2 H(\lambda)), \tag{3.4}
\end{equation*}
$$

where

$$
H(\lambda)=\frac{\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{\nu}{2}} f_{p-q}(r \nu ; \lambda) d v}{\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{\nu}{2}} f_{0}^{r v}(w ; \lambda) d w d v}
$$

Let $A(\alpha)=2^{-\frac{\alpha}{2}}\left(\Gamma\left(\frac{\alpha}{2}\right)\right)^{-1}$ and let

$$
g_{p, n}(z, \lambda)=E^{J}\left[\frac{A(p+2 J-q)}{A(n+p+2 J-q)} z^{(p+2 J-q) / 2-1}(1+z)^{-(n+p+2 J-q) / 2}\right] .
$$

Then $H(\lambda)$ can be rewritten as $H(\lambda)=g_{p, n}(r ; \lambda) / \int_{0}^{r} z^{-1} g_{p, n}(z, \lambda) d z$.
Similar to (2.7), we can show that $H(\lambda) \geq H(0)$, so that from (3.4), $c_{2}(r ; \lambda) \leq c_{2}(r ; 0)$.
Here we can verify that $c_{2}(r ; 0)$ is equal to $c_{2}(r)$ given by (3.2), and that $c_{2}(r)$ is increasing in r and $0<c_{2}(r)<(p-q-2) /(n+2)$. Therefore the proof of Theorem 3.1 is completed.

As a limiting form corresponding to (2.4), we can take the estimator

$$
\delta_{2}^{*}=P_{V} \boldsymbol{X}+\left\{1-c_{2}\left(\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2} / S\right) S /\left\|\boldsymbol{X}-P_{V} \boldsymbol{X}\right\|^{2}\right\}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)
$$

which is identical to the generalized Bayes estimator derived from Park and Baek (2011) when $P_{V}=\frac{1}{p} J$ and J is the $p \times p$ matrix all entries are 1^{\prime} s. By the same arguments as in Section 2, we can prove the following theorem.

Theorem 3.2 The estimator δ_{2}^{*} is the generalized Bayes estimator dominating $\delta_{2}^{S H}$.
Proof For the case where Σ is fully unknown, the above discussions are directly applied. Let X and S be independent random variables with $\boldsymbol{X} \sim N_{p}(\theta, . \boldsymbol{\Sigma})$ and $S \sim W_{p}(n, \boldsymbol{\Sigma})$. Assume that we want to estimate θ under the loss $(\widehat{\theta}-\theta)^{\prime} \boldsymbol{\Sigma}^{-\mathbf{1}}(\widehat{\theta}-\theta)$. Define $c_{3}(r)$ by

$$
\begin{equation*}
c_{3}(r)=\frac{p-q-2}{n-p+q+3}-\frac{2}{n-p+q+3} \int_{0}^{1} \frac{(1+r)^{\frac{n+1}{n}}}{(1+r t)^{\frac{n+1}{n}+1}} t^{\frac{p-q}{2}+1} \tag{3.5}
\end{equation*}
$$

The estimator $\delta_{3}^{*}=P_{V} \boldsymbol{X}+\left[1-\frac{c_{3}\left\{\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} S^{-1}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)\right\}}{\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} S^{-1}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)}\right]\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)$ is the generalized Bayes estimator modified from Park and Baek (2011) and Lin and Tsa (1973). Note that
$\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} \Sigma^{-1}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right) /\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} S^{-1}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)$ is distributed as $\chi_{n-p+q+1}^{2}$ independent of X. Then from Theorem 3.2, it is seen the δ_{3}^{*} dominates James-Stein estimator shrinking towards a projection vector which is given by

$$
\delta_{3}^{S H}=P_{V} \boldsymbol{X}+\left[1-\frac{p-q-2}{n-p+q+3}\left\{\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)^{\prime} S^{-1}\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right)\right\}^{-1}\right]\left(\boldsymbol{X}-P_{V} \boldsymbol{X}\right) .
$$

This completes the proof.

4. Concluding remarks

There are some special cases of P_{V}. Let the $O_{p \times p}$ and J be the $p \times p$ matrices all entries are 0's and 1's, respectively. The estimators in Kubokawa (1991) and Park and Baek (2011) are the cases of $P_{V}=O_{p \times p}$ and $P_{V}=\frac{1}{p} J$. Another case is $P_{V}=T\left(T^{\prime} T\right)^{-1} T^{\prime}$ when $T=\left(\begin{array}{cc}1 & 1 \cdots 1 \\ t_{1} & t_{2} \cdots t_{p}\end{array}\right)^{\prime}$ and $\theta_{i}=\alpha+\beta t_{i}$ for known t_{i} and unknown α and β (Lehmann and Casella, 1999), this is the case of $\operatorname{rank}\left(P_{V}\right)=2$. More general case would be represented as follows. When

$$
T=\left[(11 \cdots \cdots 1),\left(t_{11} t_{12}, \cdots \cdots t_{1 p}\right), \cdots\left(t_{h 1} t_{h 2} \cdots \cdots t_{h p}\right)\right]^{\prime}
$$

and $\theta_{i}=\alpha+\beta_{1} t_{1 i}+\beta_{2} t_{2 i}+\cdots+\beta_{h} t_{h i}$ for known $t_{1 i}, t_{2 i}, \cdots, t_{h i}$ and unknown α, and $\beta_{1}, \beta_{2}, \cdots, \beta_{h}$, such projection matrices $P_{V}=T\left(T^{\prime} T\right)^{-1} T^{\prime}$ are symmetric and idempotent of rank $h+1$.

References

Baranchick, A. (1964). Multiple regression and estimation of the mean of a multivariate normal distribution, Technical Report 51, Department of Statistics, Stanford University, California
Berger, J. O. (1976). Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss. Annals of Statistics, 4, 223-226.
Bock, M. E. (1975). Minimax estimation of the mean of a multivariate normal distribution. Annals of Statistics, 3, 209-218.
Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. Annals of Statistics, 2, 21-38.
Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Annals of Mathematical Statistics, 39, 29-48.
Brown, L. D. and Hwang, J. T. (1982). A unified admissibility proof. In Statistical Decision Theory and Related Topics, edited by S. S. Gupta and J. Berger, Academic Press, New York.
Casella G. and Hwang J. T. (1987). Employing vague prior information in the construction of confidence sets. Journal of the Multivariate Analysis, 21, 79-104.
James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the 4 th Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-379.
Kim, B. H., Baek, H. Y. and Chang, I. H., (2002). Improved estimators of the natural parameters in continuous multiparameter exponential families. Communications in Statistics, 31, 11-29.
Kubokawa, T. (1991). An approach to improving the James-Stein estimator. Journal of Multivariate Analysis, 36, 121-126.
Lehmann, E. L. and Casella G. (1999). Theory of point estimation, second edition, Springer. New York.
Park, T. R. and Baek, H. Y. (2011). An approach to improving the Lindley estimator Journal of the Korean Data $E_{\text {Information Science Society, 22, 1251-1256. }}$
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1, 197-206.

Strawderman, W. E. (1971). Proper Bayes minimax estimator for the mean of multivariate normal mean. Annals of Mathematical Statistics, 42, 385-388.

[^0]: \dagger This work was supported by Wonkwang University Research Fund 2013.
 ${ }^{1}$ Professor, Department of Computer Engineering, Seokyeong University, Seoul 136-704, Korea.
 ${ }^{2}$ Corresponding author: Professor, Division of Mathematics and Informational Statistics, Wonkwang University, Jeonbuk 570-749, Korea. E-mail: hybaek@wonkwang.ac.kr

