Journal of the Korean Data & Information Science Society 2014, **25**(6), 1549–1555

An approach to improving the James-Stein estimator shrinking towards projection vectors^{\dagger}

Tae Ryong $\mathrm{Park}^1\cdot$ Hoh Yoo Baek^2

¹Department of Computer Engineering, Seokyeong University ²Division of Mathematics and Informational Statistics, Wonkwang University Received 23 August 2014, revised 12 October 2014, accepted 17 October 2014

Abstract

Consider a *p*-variate normal distribution $(p - q \ge 3, q = rank(P_V)$ with a projection matrix P_V). Using a simple property of noncentral chi square distribution, the generalized Bayes estimators dominating the James-Stein estimator shrinking towards projection vectors under quadratic loss are given based on the methods of Brown, Brewster and Zidek for estimating a normal variance. This result can be extended the cases where covariance matrix is completely unknown or $\sum = \sigma^2 I$ for an unknown scalar σ^2 .

Keywords: Generalized Bayes estimator, James-Stein estimator, normal distribution, projection vectors, quadratic loss.

1. Introduction

Let $\mathbf{X} = (X_1, \dots, X_p)'$ be a p-variate random vector normally distributed with unknown mean θ and the identity covariance matrix \mathbf{I} . Then we consider the problem of estimating θ by $\delta(\mathbf{X})$ relative to the quadratic loss function $\|\delta(\mathbf{X}) - \theta\|^2 = (\delta(\mathbf{X}) - \theta)'(\delta(\mathbf{X}) - \theta)$. Every estimator will be evaluated by the risk function $R(\theta, \delta(\mathbf{X})) = E[\|\delta(\mathbf{X}) - \theta\|^2]$.

Stein (1956) showed that the usual estimator \boldsymbol{X} is inadmissible for $p \geq 3$ and James and Stein (1961) constructed the improved estimator, $\delta_1^{JS} = (1 - (p - 2) / \|\boldsymbol{X}\|^2) \boldsymbol{X}$. Also, Casella and Hwang (1987) has proposed the another improved estimator $\delta_1^{SH} = P_V \boldsymbol{X} + (1 - (p - q - 2)/||\boldsymbol{X} - P_V \boldsymbol{X}||^2)(\boldsymbol{X} - P_V \boldsymbol{X})$ where P_V is an idempotent and projection matrix and $rank(P_V) = q$. \boldsymbol{X} is dominated by δ_1^{SH} for $p - q \geq 3$. With the similar process of Baranchick (1964), we can construct the positive part estimator $\delta_1^{+SH} = P_V \boldsymbol{X}$ if $\|\boldsymbol{X} - P_V \boldsymbol{X}\|^2 \leq p - q - 2$; $\delta_1^{+SH} = \delta_1^{SH}$, otherwise, and we can show that δ_1^{+SH} has a smaller risk than δ_1^{SH} by Baranchik's (1964) method. This is known as an estimator eliminating undesirable properties of δ_1^{SH} that it has singularity at $(P_V \boldsymbol{X})_i$ and changes the sign of each $X_i - (P_V \boldsymbol{X})_i$ for $\|\boldsymbol{X} - P_V \boldsymbol{X}\|^2 \leq p - q - 2$. However, δ_1^{+SH} itself is unsatisfactory for θ must be estimated by a projection vector $P_V \boldsymbol{X}$ when $\|\boldsymbol{X} - P_V \boldsymbol{X}\|^2 \leq p - q - 2$. Of course, it is known that such a truncated estimator is inadmissible.

 $^{^\}dagger\,$ This work was supported by Wonkwang University Research Fund 2013.

¹ Professor, Department of Computer Engineering, Seokyeong University, Seoul 136-704, Korea.

² Corresponding author: Professor, Division of Mathematics and Informational Statistics, Wonkwang University, Jeonbuk 570-749, Korea. E-mail: hybaek@wonkwang.ac.kr

In this paper we propose a generalized Bayes estimator dominating δ_1^{SH} based on the ideas used in Brown (1968), Brewster and Zidek (1974), and Park and Baek(2011) for estimating a normal variance. In Section 2, such a smooth estimator is derived and it is shown to be admissible. It should be noted that this admissible estimator dominating δ_1^{SH} is just identical to the generalized Bayes estimator given by Strawderman (1971), Casella and Hwang(1987), and Berger (1976) with a(=c) = 2. Section 3 discusses the cases where the covariance matrix \sum of \boldsymbol{X} is fully unknown or $\sum = \sigma^2 \boldsymbol{I}$ for an unknown scalar σ^2 .

2. Admissible estimator dominating δ_1^{SH}

To improve on δ_1^{SH} , we consider the estimator

$$\delta_1(c,r) = \begin{cases} P_V \boldsymbol{X} + (1 - c/||\boldsymbol{X} - P_V \boldsymbol{X}||^2) (\boldsymbol{X} - P_V \boldsymbol{X}), & \text{if } ||\boldsymbol{X} - P_V \boldsymbol{X}||^2 \le r \\ \delta_1^{SH}, & \text{otherwise,} \end{cases}$$
(2.1)

where c and r are positive constants. For a fixed r, we shall find the best c = c(r) in the sense of minimizing the risk. Such an idea is due to Brown (1968) which constructed an improved estimator for a normal variance. Let $\lambda = ||\boldsymbol{\theta} - P_V \boldsymbol{\theta}||/2$ and $f_{p-q}(t;\lambda)$ denote the density of a noncentral chi square random variable with the degrees of freedom p-q and the noncentrality λ . Letting

$$c_{1}(r,\lambda) = p - q - 2 - 2f_{p-q}(r;\lambda) / \int_{0}^{r} t^{-1} f_{p-q}(t;\lambda) dt, \qquad (2.2)$$

we can obtain the following lemma which will be proved later.

Lemma 2.1 (i) The risk function of $\delta_1(c, r)$ is quadratic with respect to c and is minimized at $c = c_1(r, \lambda)$.

(ii) $c_1(r,\lambda) \leq c_1(r;0) = c_1(r)$, where $c_1(r)$ is expressed as

$$c_1(r) = p - q - 2 - 2 \left[\int_0^1 t^{(p-q)/2-2} \exp\{\frac{1}{2}(1-t)r\} dt \right]^{-1}.$$

(iii) $c_1(r)$ is increasing in r and $0 < c_1(r) < p - q - 2$.

Lemma 2.1 implies that for all λ , $c_1(r)$ is closer to minimizing value of the risk $R(\theta, \delta_1(c, r))$ than p - q - 2, so that we obtain the following theorem.

Theorem 2.1 The estimator $\delta_1(c_1(r), r)$ dominates $\delta_1(p-q-2, r)$ or δ_1^{SH} .

Further select 0 < r' < r. By the property (iii) of Lemma 2.1 and a similar manner, it can be seen that $\delta_1(c_1(r), r)$ is dominated by another estimator of the form

$$\delta_{1}'(c_{1},r',r) = \begin{cases} P_{V}\boldsymbol{X} + \left(1 - c_{1}(r') / \|\boldsymbol{X} - P_{V}\boldsymbol{X}\|^{2}\right)(\boldsymbol{X} - P_{V}\boldsymbol{X}), \text{ if } \|\boldsymbol{X} - P_{V}\boldsymbol{X}\|^{2} \leq r'\\ P_{V}\boldsymbol{X} + \left(1 - c_{1}(r) / \|\boldsymbol{X} - P_{V}\boldsymbol{X}\|^{2}\right)(\boldsymbol{X} - P_{V}\boldsymbol{X}), \text{ if } r' < \|\boldsymbol{X} - P_{V}\boldsymbol{X}\|^{2} \leq r \quad (2.3)\\ \delta_{1}^{SH}, & \text{otherwise.} \end{cases}$$

Now from the innovative idea of Brewster and Zidek (1974), we select a finite partition of $[0,\infty)$ represented by $0 = r_{i,0} < \cdots < r_{i,n_i-1} < r_{i,n_i} = \infty$ for each $i = 1, 2\cdots$ and a

corresponding estimator

$$\delta_1^{(i)} = P_V \boldsymbol{X} + (1 - c_1(r_{ij}) / || \boldsymbol{X} - P_V \boldsymbol{X} ||^2) (\boldsymbol{X} - P_V \boldsymbol{X}) \text{ if } r_{i,j-1} < || \boldsymbol{X} - P_V \boldsymbol{X} ||^2 \le r_{ij}.$$

Then, providing $\max_j |r_{i,j} - r_{i,j-1}| \to 0$ and $r_{i,n_{i-1}} \to \infty$ as $i \to \infty$, the sequence $\delta_1^{(i)}$ will converge pointwise to δ_1^* , where

$$\delta_1^* = P_V \mathbf{X} + (1 - c_1 (||\mathbf{X} - P_V \mathbf{X}||^2) / ||\mathbf{X} - P_V \mathbf{X}||^2) (\mathbf{X} - P_V \mathbf{X}).$$
(2.4)

It should be noted that δ_1^* is the generalized Bayes estimator given by Strawderman (1971), Berger (1976) with $a \ (= c) = 2$, and Casella and Hwang's (1987) method against the prior density

$$\pi^*(\theta) = \int_0^1 (2\pi)^{-\frac{p-q}{2}} \lambda^{-2} (\lambda/(1-\lambda))^{\frac{p-q}{2}} \exp\left\{-\frac{1}{2} (\lambda/(1-\lambda))||\theta - P_V \theta||^2\right\} d\lambda.$$

Theorem 2.2 The estimator δ_1^* is an admissible estimator dominating δ_1^{SH} .

Proof Since $\delta_1^{(i)}$ has uniformly smaller risk than δ_1^{SH} for each *i*, applying Fatou's lemma gives that δ_1^* dominates δ_1^{SH} . The admissibility follows from the result of Brown and Hwang (1982) for the prior density $\pi^*(\theta)$ which satisfies the conditions of (ii) in page 213 of their paper. Hence we get the desired conclusion.

Proof of Lemma 2.1 Let $W = ||\mathbf{X} - P_V \mathbf{X}||^2$ and $I(\cdot)$ denote the indicator function. Then for a fixed r, $R(\theta, \delta_1(c, r))$ is minimized at

$$c = \frac{E[||\mathbf{X} - P_V \mathbf{X}||^{-2} (\mathbf{X} - P_V \mathbf{X})' (\mathbf{X} - \theta) I(||\mathbf{X} - P_V \mathbf{X}||^2 \le r)]}{E[||\mathbf{X} - P_V \mathbf{X}||^{-2} I(||\mathbf{X} - P_V \mathbf{X}||^2 \le r)]}$$
$$= E\left[\left(1 - \frac{\theta'(\mathbf{X} - P_V \mathbf{X})}{W}\right) I(W \le r)\right] / E\left[\frac{1}{W}I(W \le r)\right] = c_1^*, \quad (2.5)$$

so that we shall demonstrate that c_1^* given by (2.5) is expressed as $c_1(r, \lambda)$ given in (2.2). Using the similar calculation by Kim *et al.* (2002) and Bock (1975) c_1^* can be represented as

$$c_{1}^{*} = \frac{E^{J} \left[I_{r}(p-q+2J) - \frac{2J}{p-q-2+2J} I_{r}(p-q-2+2J) \right]}{E^{J} \left[\frac{1}{p-q-2+2J} I_{r}(p-q-2+2J) \right]},$$
(2.6)

where J is a random variable having a Poisson distribution with mean λ and $I_r(X) = \int_0^r f_\alpha(x) dx$ for a central chi square density $f_\alpha(x)$ with degrees of freedom α . Since $I_r(\alpha+2) = -2f_{\alpha+2}(r) + I_r(\alpha)$, we observe that

$$c_1^* = p - q - 2 - 2E^J[f_{p-q+2J}(r)]/E^J[(p-q-2+2J)^{-1}I_r(p-q-2+2J)],$$

which can be rewritten as $c_1(r; \lambda)$ given by (2.2), and we obtain part(i). For part(ii), It is sufficient to show that

$$f_{p-q}(r,\lambda) / \int_0^r t^{-1} f_{p-q}(t;\lambda) dt \ge f_{p-q}(r) / \int_0^r t^{-1} f_{p-q}(t) dt,$$
(2.7)

which follows from the fact that $f_{p-q}(t;\lambda)/f_{p-q}(t)$ is increasing in t. Part(iii) can be easily checked and Lemma 2.1 is proved.

3. The cases of unknown covariance matrices

In this section we extend the result derived in section 2 to the case where covariance matrix is completely unknown or $\Sigma = \sigma^2 I$ for an unknown scalar σ^2 . At first, the case of $\Sigma = \sigma^2 I$ is treated.

Let X and S be a independent random variables with $X \sim N_p(\theta, \sigma^2 I)$ and $S \sim \sigma^2 \chi_n^2$. Here we want to estimate θ under the loss $\|\hat{\theta} - P_V \theta\|^2 / \sigma^2$. For positive constants c and r, a corresponding estimator to (2.1) is of the form

$$\delta_2(c,r) = \begin{cases} P_V \boldsymbol{X} + \left(1 - cS / \|\boldsymbol{X} - P_V \boldsymbol{X}\|^2\right) (\boldsymbol{X} - P_V \boldsymbol{X}), & \text{if } \frac{\|\boldsymbol{X} - P_V \boldsymbol{X}\|^2}{S} \le r \\ \delta_2^{SH}, & \text{otherwise,} \end{cases}$$
(3.1)

where, in this case, the James-Stein estimator shrinking towards a projection vector is given by

$$\delta_2^{SH} = P_V \boldsymbol{X} \left\{ \left(1 - \frac{p - q - 2}{n + 2} \right) S / \left\| \boldsymbol{X} - P_V \boldsymbol{X} \right\|^2 \right\} (\boldsymbol{X} - P_V \boldsymbol{X})$$

Define $c_2(r)$ by

$$c_{2}(r) = \frac{p-q-2}{n+2} - \frac{2}{n+2} \left[\int_{0}^{1} \frac{(1+r)^{(p+n-q)/2}}{(1+rz)^{(p+n-q)/2}} z^{\frac{p-q}{2}-2} dz \right]^{-1}.$$
 (3.2)

Theorem 3.1 The estimator $\delta_2(c_2(r), r)$ dominates δ_2^{SH} .

Proof Let $\lambda = \|\theta - P_V \theta\|^2 / (2\sigma^2)$. Note that the risk function of $\delta_2(c, r)$ is minimized at

$$c_{2}(r;\lambda) = \frac{E\left[\left(\left(S/\sigma^{2}\right)\left\{1 - \left(\mathbf{X} - P_{V}\mathbf{X}\right)'\theta\right\} / \|P_{V}\mathbf{X}\|^{2}\right)I\left(\|\mathbf{X} - P_{V}\mathbf{X}\|^{2}/S \le r\right)\right]}{E\left[\left(S/\sigma^{2}\right)^{2}\left(\sigma^{2}/\|\mathbf{X} - P_{V}\mathbf{X}\|^{2}\right)I\left(\|\mathbf{X} - P_{V}\mathbf{X}\|^{2}/S \le r\right)\right]},$$

which from (2.6), can be expressed by

$$c_{2}(r;\lambda) = \frac{E^{J} \left[\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} \left\{ I_{rv}(p-q+2J) - \frac{2J}{p-q-2+2J} I_{rv}(p-q-2+2J) \right\} dv \right]}{E^{J} \left[\int_{0}^{\infty} v^{\frac{n}{2}+1} e^{-\frac{v}{2}} \frac{1}{p-q-2+2J} I_{rv}(p-q-2+2J) dv \right]}$$
$$= \frac{\int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} \left\{ (p-q-2) \int_{0}^{rv} w^{-1} f_{p-q}(w;\lambda) dw - 2f_{p-q}(rv;\lambda) \right\} dv}{\int_{0}^{\infty} v^{\frac{n}{2}+1} e^{-\frac{v}{2}} \int_{0}^{rv} w^{-1} f_{p-q}(w;\lambda) dw dv}.$$
(3.3)

By integration by parts,

$$\int_{0}^{\infty} e^{-\frac{v}{2}} \left\{ v^{\frac{n}{2}+1} \int_{0}^{rv} w^{-1} f_{p-q}\left(w;\lambda\right) dw \right\} dv$$

= $(n+2) \int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} \int_{0}^{rv} w^{-1} f_{p-q}\left(w;\lambda\right) dw dv + 2 \int_{0}^{\infty} v^{\frac{n}{2}} e^{-\frac{v}{2}} f_{p-q}\left(rv;\lambda\right) dv$

so that

$$c_{2}(r;\lambda) = (p - q - 2 - 2H(\lambda)) / (n + 2 + 2H(\lambda)), \qquad (3.4)$$

where

$$H(\lambda) = \frac{\int_0^\infty v^{\frac{n}{2}} e^{-\frac{\nu}{2}} f_{p-q}(r\nu;\lambda) dv}{\int_0^\infty v^{\frac{n}{2}} e^{-\frac{\nu}{2}} f_0^{rv}(w;\lambda) dw dv}.$$

Let $A(\alpha) = 2^{-\frac{\alpha}{2}} (\Gamma(\frac{\alpha}{2}))^{-1}$ and let

$$g_{p,n}(z,\lambda) = E^J \left[\frac{A(p+2J-q)}{A(n+p+2J-q)} z^{(p+2J-q)/2-1} (1+z)^{-(n+p+2J-q)/2} \right].$$

Then $H(\lambda)$ can be rewritten as $H(\lambda) = g_{p,n}(r;\lambda) / \int_0^r z^{-1} g_{p,n}(z,\lambda) dz$. Similar to (2.7), we can show that $H(\lambda) \ge H(0)$, so that from (3.4), $c_2(r;\lambda) \le c_2(r;0)$. Here we can verify that $c_2(r; 0)$ is equal to $c_2(r)$ given by (3.2), and that $c_2(r)$ is increasing in r and $0 < c_2(r) < (p-q-2)/(n+2)$. Therefore the proof of Theorem 3.1 is completed.

As a limiting form corresponding to (2.4), we can take the estimator

$$\delta_{2}^{*} = P_{V}\boldsymbol{X} + \left\{1 - c_{2}\left(\left\|\boldsymbol{X} - P_{V}\boldsymbol{X}\right\|^{2}/S\right)S/\left\|\boldsymbol{X} - P_{V}\boldsymbol{X}\right\|^{2}\right\}\left(\boldsymbol{X} - P_{V}\boldsymbol{X}\right),$$

which is identical to the generalized Bayes estimator derived from Park and Baek (2011) when $P_V = \frac{1}{p}J$ and J is the $p \times p$ matrix all entries are 1' s. By the same arguments as in Section 2, we can prove the following theorem.

Theorem 3.2 The estimator δ_2^* is the generalized Bayes estimator dominating δ_2^{SH} .

Proof For the case where Σ is fully unknown, the above discussions are directly applied. Let X and S be independent random variables with $X \sim N_p(\theta, \Sigma)$ and $S \sim W_p(n, \Sigma)$. Assume that we want to estimate θ under the loss $(\hat{\theta} - \theta)' \Sigma^{-1}$ $(\hat{\theta} - \theta)$. Define $c_3(r)$ by

$$c_3(r) = \frac{p-q-2}{n-p+q+3} - \frac{2}{n-p+q+3} \int_0^1 \frac{(1+r)^{\frac{n+1}{n}}}{(1+rt)^{\frac{n+1}{n}+1}} t^{\frac{p-q}{2}+1}.$$
 (3.5)

The estimator $\delta_3^* = P_V \boldsymbol{X} + \left[1 - \frac{c_3\{(\boldsymbol{X} - P_V \boldsymbol{X})'S^{-1}(\boldsymbol{X} - P_V \boldsymbol{X})\}}{(\boldsymbol{X} - P_V \boldsymbol{X})'S^{-1}(\boldsymbol{X} - P_V \boldsymbol{X})}\right](\boldsymbol{X} - P_V \boldsymbol{X})$ is the generalized Bayes estimator modified from Park and Baek (2011) and Lin and Tsa (1973). Note that

 $(\mathbf{X} - P_V \mathbf{X})' \Sigma^{-1} (\mathbf{X} - P_V \mathbf{X}) / (\mathbf{X} - P_V \mathbf{X})' S^{-1} (\mathbf{X} - P_V \mathbf{X})$ is distributed as $\chi^2_{n-p+q+1}$ independent of X. Then from Theorem 3.2, it is seen the δ^*_3 dominates James-Stein estimator shrinking towards a projection vector which is given by

$$\delta_3^{SH} = P_V \mathbf{X} + \left[1 - \frac{p - q - 2}{n - p + q + 3} \left\{ (\mathbf{X} - P_V \mathbf{X})' S^{-1} (\mathbf{X} - P_V \mathbf{X}) \right\}^{-1} \right] (\mathbf{X} - P_V \mathbf{X}).$$

This completes the proof.

4. Concluding remarks

There are some special cases of P_V . Let the $O_{p \times p}$ and J be the $p \times p$ matrices all entries are 0's and 1's, respectively. The estimators in Kubokawa (1991) and Park and Baek (2011) are the cases of $P_V = O_{p \times p}$ and $P_V = \frac{1}{p}J$. Another case is $P_V = T(T'T)^{-1}T'$ when $T = \begin{pmatrix} 1 & 1 \cdots 1 \\ t_1 & t_2 \cdots t_p \end{pmatrix}'$ and $\theta_i = \alpha + \beta t_i$ for known t_i and unknown α and β (Lehmann and Casella, 1999), this is the case of $rank(P_V) = 2$. More general case would be represented as follows. When

$$T = [(1 \ 1 \cdots \cdots 1), (t_{11} \ t_{12}, \cdots \cdots t_{1p}), \cdots (t_{h1} \ t_{h2} \cdots \cdots t_{hp})]'$$

and $\theta_i = \alpha + \beta_1 t_{1i} + \beta_2 t_{2i} + \cdots + \beta_h t_{hi}$ for known $t_{1i}, t_{2i}, \cdots, t_{hi}$ and unknown α , and $\beta_1, \beta_2, \cdots, \beta_h$, such projection matrices $P_V = T(T'T)^{-1}T'$ are symmetric and idempotent of rank h + 1.

References

- Baranchick, A. (1964). Multiple regression and estimation of the mean of a multivariate normal distribution, Technical Report 51, Department of Statistics, Stanford University, California
- Berger, J. O. (1976). Admissible minimax estimation of a multivariate normal mean with arbitrary quadratic loss. Annals of Statistics, 4, 223-226.
- Bock, M. E. (1975). Minimax estimation of the mean of a multivariate normal distribution. Annals of Statistics, 3, 209-218.
- Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. Annals of Statistics, 2, 21-38.
 Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. Annals of Mathematical Statistics, 39, 29-48.
- Brown, L. D. and Hwang, J. T. (1982). A unified admissibility proof. In *Statistical Decision Theory and Related Topics*, edited by S. S. Gupta and J. Berger, Academic Press, New York.
- Casella G. and Hwang J. T. (1987). Employing vague prior information in the construction of confidence sets. Journal of the Multivariate Analysis, 21, 79-104.
- James, W. and Stein, C. (1961). Estimation with quadratic loss. Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, 1, 361-379.
- Kim, B. H., Baek, H. Y. and Chang, I. H., (2002). Improved estimators of the natural parameters in continuous multiparameter exponential families. *Communications in Statistics*, **31**, 11-29.
- Kubokawa, T. (1991). An approach to improving the James-Stein estimator. Journal of Multivariate Analysis, 36, 121-126.
- Lehmann, E. L. and Casella G. (1999). Theory of point estimation, second edition, Springer. New York.
- Park, T. R. and Baek, H. Y. (2011). An approach to improving the Lindley estimator Journal of the Korean Data & Information Science Society, 22, 1251-1256.
- Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1, 197-206.

An approach to improving the James-Stein estimator shrinking towards projection vectors 1555

Strawderman, W. E. (1971). Proper Bayes minimax estimator for the mean of multivariate normal mean. Annals of Mathematical Statistics, 42, 385-388.