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Abstract

Consider a p-variate normal distribution (p − q ≥ 3, q = rank(PV ) with a pro-
jection matrix PV ). Using a simple property of noncentral chi square distribution, the
generalized Bayes estimators dominating the James-Stein estimator shrinking towards
projection vectors under quadratic loss are given based on the methods of Brown, Brew-
ster and Zidek for estimating a normal variance. This result can be extended the cases
where covariance matrix is completely unknown or

∑
= σ2I for an unknown scalar

σ2.

Keywords: Generalized Bayes estimator, James-Stein estimator, normal distribution,
projection vectors, quadratic loss.

1. Introduction

Let X = (X1, · · · , Xp)
′

be a p-variate random vector normally distributed with unknown
mean θ and the identity covariance matrix I. Then we consider the problem of estimating θ
by δ(X) relative to the quadratic loss function ‖δ(X)− θ‖2 = (δ(X)− θ)′(δ(X)− θ). Every
estimator will be evaluated by the risk function R(θ, δ(X)) = E[‖δ(X)− θ‖2].

Stein (1956) showed that the usual estimator X is inadmissible for p ≥ 3 and James
and Stein (1961) constructed the improved estimator, δJS1 = (1− (p− 2) /‖X‖2 )X. Also,
Casella and Hwang (1987) has proposed the another improved estimator δSH1 = PVX+(1−
(p−q−2)/||X−PVX||2)(X−PVX) where PV is an idempotent and projection matrix and
rank(PV ) = q. X is dominated by δSH1 for p−q ≥ 3. With the similar process of Baranchick
(1964), we can construct the positive part estimator δ+SH1 = PVX if ‖X−PVX‖2 ≤ p−q−2
; δ+SH1 = δSH1 , otherwise, and we can show that δ+SH1 has a smaller risk than δSH1 by
Baranchik’s (1964) method. This is known as an estimator eliminating undesirable properties
of δSH1 that it has singularity at (PVX)i and changes the sign of each Xi − (PVX)i for
‖X −PVX‖2 ≤ p− q− 2. However, δ+SH1 itself is unsatisfactory for θ must be estimated by
a projection vector PVX when ‖X − PVX‖2 ≤ p− q − 2. Of course, it is known that such
a truncated estimator is inadmissible.
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In this paper we propose a generalized Bayes estimator dominating δSH1 based on the ideas
used in Brown (1968), Brewster and Zidek (1974), and Park and Baek(2011) for estimating
a normal variance. In Section 2, such a smooth estimator is derived and it is shown to be
admissible. It should be noted that this admissible estimator dominating δSH1 is just identical
to the generalized Bayes estimator given by Strawderman (1971), Casella and Hwang(1987),
and Berger (1976) with a(= c) = 2. Section 3 discusses the cases where the covariance matrix∑

of X is fully unknown or
∑

= σ2I for an unknown scalar σ2.

2. Admissible estimator dominating δSH1

To improve on δSH1 , we consider the estimator

δ1(c, r) =

{
PVX + (1− c/||X−PVX||2)(X−PVX), if ||X−PVX||2 ≤ r

δSH1 , otherwise,
(2.1)

where c and r are positive constants. For a fixed r, we shall find the best c = c(r) in the
sense of minimizing the risk. Such an idea is due to Brown (1968) which constructed an
improved estimator for a normal variance. Let λ = ||θ − PV θ||/2 and fp−q(t;λ) denote the
density of a noncentral chi square random variable with the degrees of freedom p − q and
the noncentrality λ. Letting

c1 (r, λ) = p− q − 2− 2fp−q (r;λ) /

∫ r

0

t−1fp−q (t;λ) dt, (2.2)

we can obtain the following lemma which will be proved later.

Lemma 2.1 (i) The risk function of δ1(c, r) is quadratic with respect to c and is minimized
at c = c1(r, λ).
(ii) c1(r, λ) ≤ c1(r; 0) = c1(r), where c1(r) is expressed as

c1(r) = p− q − 2− 2[
∫ 1

0
t(p−q)/2−2 exp{ 12 (1− t)r}dt]−1.

(iii) c1(r) is increasing in r and 0 < c1(r) < p− q − 2.

Lemma 2.1 implies that for all λ, c1(r) is closer to minimizing value of the risk R(θ, δ1(c, r))
than p− q − 2, so that we obtain the following theorem.

Theorem 2.1 The estimator δ1(c1(r), r) dominates δ1(p− q − 2, r) or δSH1 .

Further select 0 < r′ < r. By the property (iii) of Lemma 2.1 and a similar manner, it can
be seen that δ1 (c1 (r) , r) is dominated by another estimator of the form

δ′1 (c1, r
′, r)=


PVX+

(
1−c1 (r′) / ‖X−PVX‖2

)
(X−PVX) , if ‖X−PVX‖2 ≤r′

PVX+
(
1−c1 (r) / ‖X−PVX‖2

)
(X−PVX) , if r′<‖X−PVX‖2 ≤r

δSH1 , otherwise.

(2.3)

Now from the innovative idea of Brewster and Zidek (1974), we select a finite partition of
[0,∞) represented by 0 = ri,0 < · · · < ri,ni−1 < ri,ni = ∞ for each i = 1, 2 · · · and a
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corresponding estimator

δ
(i)
1 = PVX + (1− c1(rij)/||X − PVX||2)(X − PVX) if ri,j−1 < ||X − PVX||2 ≤ rij .

Then, providing maxj |ri,j − ri,j−1| → 0 and ri,ni−1
→ ∞ as i → ∞, the sequence δ

(i)
1 will

converge pointwise to δ∗1 , where

δ∗1 = PVX + (1− c1(||X − PVX||2)/||X − PVX||2)(X − PVX). (2.4)

It should be noted that δ∗1 is the generalized Bayes estimator given by Strawderman (1971),
Berger (1976) with a (= c) = 2, and Casella and Hwang’s (1987) method against the prior
density

π∗(θ) =

∫ 1

0

(2π)−
p−q
2 λ−2(λ/(1− λ))

p−q
2 exp

{
−1

2
(λ/(1− λ))||θ − PV θ||2

}
dλ.

Theorem 2.2 The estimator δ∗1 is an admissible estimator dominating δSH1 .

Proof Since δ
(i)
1 has uniformly smaller risk than δSH1 for each i, applying Fatou’s lemma

gives that δ∗1 dominates δSH1 . The admissibility follows from the result of Brown and Hwang
(1982) for the prior density π∗(θ) which satisfies the conditions of (ii) in page 213 of their
paper. Hence we get the desired conclusion. �

Proof of Lemma 2.1 Let W = ||X − PVX||2 and I(·) denote the indicator function.
Then for a fixed r, R(θ, δ1(c, r)) is minimized at

c =
E[ ||X − PVX||−2(X − PVX)′(X − θ)I(||X − PVX||2 ≤ r) ]

E[ ||X − PVX||−2 I(||X − PVX||2 ≤ r) ]

= E

[ (
1−

θ′(X − PVX)

W

)
I(W ≤ r)

]
/ E

[
1

W
I(W ≤ r)

]
= c∗1, (2.5)

so that we shall demonstrate that c∗1 given by (2.5) is expressed as c1(r, λ) given in (2.2).
Using the similar calculation by Kim et al. (2002) and Bock (1975) c∗1 can be represented as

c∗1 =

EJ

[
Ir(p− q + 2J)−

2J

p− q − 2 + 2J
Ir(p− q − 2 + 2J)

]

EJ

[
1

p− q − 2 + 2J
Ir(p− q − 2 + 2J)

] , (2.6)

where J is a random variable having a Poisson distribution with mean λ and Ir(X) =∫ r
0
fα(x)dx for a central chi square density fα(x) with degrees of freedom α. Since Ir(α+2) =

−2fα+2(r) + Ir(α), we observe that

c∗1 = p− q − 2− 2EJ [fp−q+2J(r)]/EJ [(p− q − 2 + 2J)−1Ir(p− q − 2 + 2J)],

which can be rewritten as c1(r;λ) given by (2.2), and we obtain part(i). For part(ii), It is
sufficient to show that

fp−q(r, λ)/

∫ r

0

t−1fp−q(t;λ)dt ≥ fp−q(r)/
∫ r

0

t−1fp−q(t)dt, (2.7)
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which follows from the fact that fp−q(t;λ)/fp−q(t) is increasing in t. Part(iii) can be easily
checked and Lemma 2.1 is proved. �

3. The cases of unknown covariance matrices

In this section we extend the result derived in section 2 to the case where covariance
matrix is completely unknown or Σ = σ2I for an unknown scalar σ2. At first, the case of
Σ = σ2I is treated.

Let X and S be a independent random variables with X ∼ Np(θ, σ
2I) and S ∼ σ2 χ2

n.

Here we want to estimate θ under the loss ‖θ̂ − PV θ‖2/σ2. For positive constants c and r,
a corresponding estimator to (2.1) is of the form

δ2(c, r) =

PVX +
(
1− cS/‖X − PVX‖2

)
(X − PVX) , if

‖X − PVX‖2

S
≤ r

δSH2 , otherwise,

(3.1)

where, in this case, the James-Stein estimator shrinking towards a projection vector is given
by

δSH2 = PVX

{(
1− p− q − 2

n+ 2

)
S/ ‖X − PVX‖2

}
(X − PVX) .

Define c2 (r) by

c2 (r) =
p− q − 2

n+ 2
−

2

n+ 2

[∫ 1

0

(1 + r)
(p+n−q)/2

(1 + rz)
(p+n−q)/2z

p−q
2 −2dz

]−1
. (3.2)

Theorem 3.1 The estimator δ2(c2(r), r) dominates δSH2 .

Proof Let λ = ‖θ− PV θ‖2/(2σ2). Note that the risk function of δ2(c, r) is minimized at

c2(r;λ) =
E
[
(
(
S/σ2

){
1− (X − PVX)

′
θ
}
/ ‖PVX‖2)I

(
‖X − PVX‖2 /S ≤ r

)]
E
[
(S/σ2)

2
(
σ2/ ‖X − PVX‖2

)
I
(
‖X − PVX‖2 /S ≤ r

)] ,

which from (2.6), can be expressed by

c2(r;λ) =

EJ

[∫∞
0
v
n
2 e−

v
2

{
Irv(p− q + 2J)−

2J

p− q − 2 + 2J
Irv(p− q − 2 + 2J)

}
dv

]

EJ

[∫∞
0
v
n
2 +1e−

v
2

1

p− q − 2 + 2J
Irv(p− q − 2 + 2J)dv

]

=

∫∞
0
v
n
2 e−

v
2

{
(p− q − 2)

∫ rv
0
w−1fp−q (w;λ) dw − 2fp−q (rv;λ)

}
dv∫∞

0
v
n
2 +1e−

v
2

∫ rv
0
w−1fp−q (w;λ) dwdv

. (3.3)
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By integration by parts,∫ ∞
0

e−
v
2

{
v
n
2 +1

∫ rv

0

w−1fp−q (w;λ) dw

}
dv

= (n+ 2)

∫ ∞
0

v
n
2 e−

v
2

∫ rv

0

w−1fp−q (w;λ) dwdv + 2

∫ ∞
0

v
n
2 e−

v
2 fp−q (rv;λ) dv,

so that

c2 (r;λ) = (p− q − 2− 2H (λ)) / (n+ 2 + 2H (λ)) , (3.4)

where

H(λ) =

∫∞
0
v
n
2 e−

ν
2 fp−q(rν;λ)dv∫∞

0
v
n
2 e−

ν
2 frv0 (w;λ)dwdv

.

Let A(α) = 2−
α
2 (Γ(α2 ))−1 and let

gp,n (z, λ) = EJ

[
A (p+ 2J − q)

A (n+ p+ 2J − q)
z(p+2J−q)/2−1 (1 + z)

−(n+p+2J−q)/2

]
.

Then H(λ) can be rewritten as H(λ) = gp,n(r;λ)/
∫ r
0
z−1gp,n(z, λ)dz.

Similar to (2.7), we can show that H(λ) ≥ H(0), so that from (3.4), c2(r;λ) ≤ c2(r; 0).
Here we can verify that c2(r; 0) is equal to c2(r) given by (3.2), and that c2(r) is increasing
in r and 0<c2(r)<(p−q−2)/(n+2). Therefore the proof of Theorem 3.1 is completed. �

As a limiting form corresponding to (2.4), we can take the estimator

δ∗2 = PVX +
{

1− c2
(
‖X − PVX‖2 /S

)
S/ ‖X − PVX‖2

}
(X − PVX) ,

which is identical to the generalized Bayes estimator derived from Park and Baek (2011)
when PV = 1

pJ and J is the p× p matrix all entries are 1′ s. By the same arguments as in
Section 2, we can prove the following theorem.

Theorem 3.2 The estimator δ∗2 is the generalized Bayes estimator dominating δSH2 .

Proof For the case where Σ is fully unknown, the above discussions are directly applied.
Let X and S be independent random variables with X ∼ Np(θ, .Σ) and S ∼ Wp(n,Σ).

Assume that we want to estimate θ under the loss (θ̂ − θ)′Σ−1 (θ̂ − θ). Define c3(r) by

c3(r) =
p− q − 2

n− p+ q + 3
−

2

n− p+ q + 3

∫ 1

0

(1 + r)
n+1
n

(1 + rt)
n+1
n +1

t
p−q
2 +1. (3.5)

The estimator δ∗3 = PVX + [1− c3{(X−PVX)′S−1(X−PVX)}
(X−PVX)′S−1(X−PVX) ](X −PVX) is the generalized

Bayes estimator modified from Park and Baek (2011) and Lin and Tsa (1973). Note that
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(X − PVX)′Σ−1(X − PVX)/(X − PVX)′S−1(X − PVX) is distributed as χ2
n−p+q+1 in-

dependent of X. Then from Theorem 3.2, it is seen the δ∗3 dominates James-Stein estimator
shrinking towards a projection vector which is given by

δSH3 = PVX +

[
1−

p− q − 2

n− p+ q + 3

{
(X − PVX)

′
S−1 (X − PVX)

}−1]
(X − PVX) .

This completes the proof. �

4. Concluding remarks

There are some special cases of PV . Let the Op×p and J be the p× p matrices all entries
are 0’s and 1’s, respectively. The estimators in Kubokawa (1991) and Park and Baek (2011)
are the cases of PV = Op×p and PV = 1

pJ . Another case is PV = T (T ′T )−1T ′ when

T =
(

1 1 · · · 1
t1 t2 · · · tp

)′
and θi = α + βti for known ti and unknown α and β (Lehmann and

Casella, 1999), this is the case of rank(PV ) = 2. More general case would be represented as
follows. When

T = [(1 1 · · · · · · 1), (t11 t12, · · · · · · t1p), · · · (th1 th2 · · · · · · thp)]
′

and θi = α + β1t1i + β2t2i + · · · + βhthi for known t1i, t2i, · · · , thi and unknown α, and
β1, β2, · · · , βh, such projection matrices PV = T (T ′T )−1T ′ are symmetric and idempotent
of rank h+ 1.
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