DOI QR코드

DOI QR Code

Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping

  • 장병찬 (한국교통대학교 나노화학소재공학과) ;
  • 유기원 (한국교통대학교 나노화학소재공학과) ;
  • 양수빈 (한국교통대학교 나노화학소재공학과) ;
  • 민송기 (한국교통대학교 나노화학소재공학과) ;
  • 손종태 (한국교통대학교 나노화학소재공학과)
  • Jang, Byeong-Chan (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Yoo, Gi-Won (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Yang, Su-Bin (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Min, Song-Gi (Department of Nano Polymer Science & Engineering, Korea National University of Transportation) ;
  • Son, Jong-Tae (Department of Nano Polymer Science & Engineering, Korea National University of Transportation)
  • 투고 : 2014.04.27
  • 심사 : 2014.10.10
  • 발행 : 2014.11.28

초록

리튬 이차전지 양극소재인 Ni-rich계의 $Li[Ni_{1-x-y}Co_xMn_y]O_2$는 높은 방전용량을 갖고 있지만 Ni의 함량이 많아짐으로써, 구조적 안정성과 전기화학적 특성이 떨어지는 문제점이 있다. 이러한 문제점을 해결하기 위해 양이온 도핑에 대한 연구가 시행되고 있다. 본 연구는, 공침법을 이용하여 제조한 $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$ 전구체를 사용하여 바륨(Ba)이 도핑된 $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01)를 합성하였고, 바륨(Ba)의 도핑에 따른 구조적 안정성 및 전기화학적 특성을 연구하였다. 구조적 특성분석을 위한 X선-회절분석 결과, 바륨(Ba) 도핑시 $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor)비가 감소하는 것을 통해 층상구조의 안정성이 증가한 것을 확인하였고, 전기 화학적 특성이 개선될 것으로 예측하였다. 전기화학적 분석 결과, 바륨(Ba)을 도핑한 전극의 경우 과전압의 감소로 $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ 전극보다 $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01)전극의 방전용량이 $23mAhg^{-1}$ 증가하였고, 구조적 안정성의 증가로 싸이클 특성의 개선과, 전극과 전해액 간의 전하이동 저항의 감소로 인하여 고율특성 특성이 개선된 것을 확인 하였다.

Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

키워드

참고문헌

  1. Q. CaO, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, Electrochem. Commun. 9 1288 (2007). https://doi.org/10.1016/j.elecom.2007.01.033
  2. P. He, H. Wang, L. Qi, Tetsuya Osaka, J. Power Sources 158 529 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.044
  3. M. V. Reddy, T. W. Jie, C. J. Jafta, K. I. Ozoemena, M. K. Mathe, A. S. Nairf, S. S. Pengg, M. S. Idrisg, G. Balakrishnah, F. I. Ezemai, B. V. R. Chowdari, Electrochimica Acta (2013).
  4. T. Ohzuku, Y. Makimura, Chem. Lett. 30 642 (2001). https://doi.org/10.1246/cl.2001.642
  5. T. Ohzuku, Y. Makimura, Chem. Lett. 30 744 (2001). https://doi.org/10.1246/cl.2001.744
  6. S. H. Park, S. W. Oh, and Y. K. Sun, J. Power Sources 146 622 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.078
  7. M. Kageyama, D. Li, K. Kobayakawa, Y. Sato, and Y. S. Lee, J. Power Sources 157 494 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.002
  8. S. W. Cho, J. H. Ju, S. H. Ryu, and K. S. Ryu, J. Korean Electrochem. Soc. 13 264 (2010). https://doi.org/10.5229/JKES.2010.13.4.264
  9. D. H. Kang, N. Arailym, J. E. Chae, and S. S. Kim, J. Korean Electrochem. Soc. 16 191 (2013). https://doi.org/10.5229/JKES.2013.16.4.191
  10. R. Sathiamoorthi, P. Shakkthivel, R. Gangadharan, T. Vasudevan, Materials Chemistry and Physics 104 403 (2007). https://doi.org/10.1016/j.matchemphys.2007.03.034
  11. D. Yanhuai, Z. Ping, J. Yong, J. Rare Earth 25 268 (2007). https://doi.org/10.1016/S1002-0721(07)60486-4
  12. K. Shizuka, C. Kiyohara, K. Shima, Y. Takeda, J. Power Sources 166 223 (2007).
  13. H. Li, G. Chen, B. Zhang, J. Xu, Solid state commun. 146 115 (2008). https://doi.org/10.1016/j.ssc.2008.02.006
  14. R. Sathiamoorthi, T. Vasudevan, Materials Chemistry and Physics 9 416 (2007).
  15. X. Zhang, W. J. Jiang, A. Mauger, Qilu, F. Gendron, C. M. Julie, J. Power Sources 195 1292 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.029
  16. C. S. Kang, C. Kim and J. T. Son, J. KIEEME 13 s304 (2012).
  17. S. M. Lee, S. H. Oh, B. J. Lee, W. I. Cho, H. Jang, J. Korean Electrochem. Soc. 9 6 (2006). https://doi.org/10.5229/JKES.2006.9.1.006