CERTAIN CLASSES OF ANALYTIC FUNCTIONS AND DISTRIBUTIONS WITH GENERAL EXPONENTIAL GROWTH

Byung Keun Sohn

Abstract

Let \mathcal{K}_{M}^{\prime} be the generalized tempered distributions of $e^{M(t)}{ }_{-}$ growth, where the function $M(t)$ grows faster than any linear functions as $|t| \rightarrow \infty$, and let \mathbf{K}_{M}^{\prime} be the Fourier transform spaces of \mathcal{K}_{M}^{\prime}. We obtain the relationship between certain classes of analytic functions in tubes, \mathcal{K}_{M}^{\prime} and $\mathbf{K}_{\mathbf{M}}^{\prime}$.

1. Introduction

In his book [9], V. S. Vladimirov has considered the relationship between the class of analytic functions in tubes $H(A ; C)$ and tempered distributions with polynomial growth \mathcal{S}^{\prime}. Later R. D. Carmichael [3] has introduced two different types of classes of analytic functions in tubes $G_{p}(A ; C)$ and $F_{p}(A ; C)$ both of which are extensions of $H(A ; C)$ and has obtained the relationship between $G_{p}(A ; C)$ (and $\left.F_{p}(A ; C)\right)$ and tempered distributions with exponential growth of polynomial powers $\mathcal{K}_{p}^{\prime}, p>1$, and the Fourier transform spaces $\mathbf{K}_{\mathbf{p}}^{\prime}, p>1$ of $\mathcal{K}_{p}^{\prime}, p>1$.

In this paper, we introduce two different types of classes of analytic functions in tubes $G_{M}(A ; C)$ and $F_{M}(A ; C)$ which are extensions of $G_{p}(A ; C)$ and $F_{p}(A ; C)$, respectively, and obtain the relationship between $G_{M}(A ; C)$ (and $\left.F_{M}(A ; C)\right)$ and tempered distributions with general exponential powers growth \mathcal{K}_{M}^{\prime} and the Fourier transform $\mathbf{K}_{\mathrm{M}}^{\prime}$ of \mathcal{K}_{M}^{\prime}.

In the main sections, we show that elements of $G_{M}(A ; C)$ and $F_{M}(A ; C)$ can be represented as the Fourier-Laplace transform of distributions \mathcal{K}_{M}^{\prime}. Also we present representations of $G_{M}(A ; C)$ and $F_{M}(A ; C)$ as elements in $\mathbf{K}_{\mathrm{M}}^{\prime}$ in terms of Fourier transforms in \mathbf{K}_{M}^{\prime} of certain elements in \mathcal{K}_{M}^{\prime} and strong boundedness for $G_{M}(A ; C)$ and $F_{M}(A ; C)$ as elements in $\mathbf{K}_{\mathbf{M}}^{\prime}$. In particular, we show that elements of $F_{M}(A ; C)$ obtain distributional boundary values in $\mathbf{K}_{\mathbf{M}}^{\prime}$.

Received November 18, 2013; Revised July 9, 2014.
2010 Mathematics Subject Classification. 46F20, 46F12, 46F10.
Key words and phrases. analytic functions, distributions.

2. Notation and preliminaries

We denote the points of \mathbb{R}^{n} spaces by $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ and $s=\left(s_{1}, s_{2}, \ldots\right.$, $\left.y_{n}\right)$. The letter n always denotes the dimension. In \mathbb{C}^{n} the points are denoted by $z=x+i y, x, y \in \mathbb{R}^{n}$. We define $\langle t, s\rangle=t_{1} s_{1}+t_{2} s_{2}+\cdots+t_{n} s_{n}$ and similarly define $\langle t, z\rangle, t \in \mathbb{R}^{n}, z \in \mathbb{C}^{n}$. α denotes n tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ of nonnegative integers. $|\alpha|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}$ and $\alpha!=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$. If $k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is an n tuples of integers, $t^{k}=t_{1}^{k_{1}} t_{2}^{k_{2}} \cdots t_{n}^{k_{n}}, t \in \mathbb{R}^{n}$, with similar definition for $z^{k}, z \in \mathbb{C}^{n}$. If $a \in R$, then $a t=\left(a t_{1}, a t_{2}, \ldots, a t_{n}\right)$. We write $D_{j}=-\frac{1}{2 \pi i}\left(\frac{\partial}{\partial t_{j}}\right), j=1,2, \ldots, n$, and $D_{t}^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \cdots D_{n}^{\alpha_{n}}$ and similarly write D_{z}^{α}.

Definition 1. A set $C \subset \mathbb{R}^{n}$ is a cone with vertex at zero if $y \in C$ implies $\lambda y \in C$ for all positive real scalar λ.
Definition 2. Let C be a cone. $C \cap\left\{y \in \mathbb{R}^{n}:|y|=1\right\}$ is called the projection of C and is denoted $\operatorname{pr}(C)$.
Definition 3. If C^{\prime} and C are cones such that $\operatorname{pr}\left(\bar{C}^{\prime}\right) \subset \operatorname{pr}(C)$, then C^{\prime} is called a compact subcone of C.

For a cone $C, \mathcal{O}(c)$ will denote the convex hull or envelop of C and $T^{C}=$ $\mathbb{R}^{n}+i C \subseteq \mathbb{C}^{n}$ is a tube in \mathbb{C}^{n}.

Definition 4. If C is open, T^{C} is called a tubular cone. If C is both open and connected, T^{C} is called a tubular radial domain.
Definition 5. The set $C^{*}=\left\{t \in \mathbb{R}^{n}:\langle t, y\rangle \geq 0, y \in C\right\}$ is the dual cone of the cone C and $C_{*}=\mathbb{R}^{n} \backslash C^{*}$.

Definition 6. The function

$$
u_{C}=\sup _{y \in \operatorname{pr}(C)}(-\langle t, y\rangle)
$$

is the indicatrix of the cone C.
It follows that $C^{*}=\left\{t \in \mathbb{R}^{n}: u_{C}(t) \leq 0\right\}$. Further $u_{C}(t) \leq u_{\mathcal{O}(C)}(t)$ and if $t \in C^{*}$, then $u_{C}(t)=u_{\mathcal{O}(C)}(t)$ [9, p. 219]. To characterize the nonconvexity of the cone, we have the following; for a cone C, let

$$
\rho_{C}=\sup _{t \in C^{*}} \frac{u_{\mathcal{O}(C)}}{u_{C}(t)} .
$$

A cone C is convex if and only if $\rho_{C}=1$ [9, Sec. 25.1, Lemma 2] and if a cone is open and consists of finite number of components, then $\rho_{C}<1[9$, Sec. 25.1, Lemma 3]. In this paper we shall be considering the case $1 \leq \rho_{C}<+\infty$ for all cones C.

Now we present four important facts what will be used frequently later.
Lemma 1 ([9, Sec. 25.1]). Let C be a cone. Then

$$
-\langle t, y\rangle \leq|y| u_{\mathcal{O}(C)}, \quad u_{\mathcal{O}(C)} \leq \rho_{C} u_{C}(t), \quad t \in C^{*}, y \in \mathcal{O}(C)
$$

Lemma 2 ([9, Eq.(28), p. 241]). Let C be an open connected cone and let C_{*}^{\prime} be a compact subcone of C_{*}. Then there exist $\xi=\xi\left(C_{*}^{\prime}\right)$, depending on C_{*}^{\prime}, such that

$$
\xi|t| \leq u_{C}(t) \leq|t|, \quad t \in C_{*}^{\prime} .
$$

Lemma 3 ([9, Sec. 25.2, Lemma 2]). Let C be an open cone and C^{\prime} that is an arbitrary subcone of $\mathcal{O}(C)$. Then there exist a number $\delta=\delta\left(C^{\prime}\right)$ and open cone $\left(C^{*}\right)^{\prime}$ both depending on C^{\prime} such that $C^{*} \subset\left(C^{*}\right)^{\prime}$ and

$$
\langle y, t\rangle \geq \delta|y||t|, \quad y \in C^{\prime} \subset \mathcal{O}(C), t \in\left(C^{*}\right)^{\prime} .
$$

Lemma 4 ([9, Lemma, p. 241]). Let C_{*}^{\prime} be cone that is compact in the cone C_{*}. For an arbitrary number $\eta \in(0,1)$, there exists a compact subcone $C^{\prime}=$ $C^{\prime}\left(C_{*}^{\prime}, \eta\right)$ depending on C_{*}^{\prime} and on η such that for any $t \in C_{*}^{\prime}$, there exists a point $y_{t}^{0} \in \operatorname{Pr}\left(C^{\prime}\right)$ at which

$$
-\left\langle t, y_{t}^{0}\right\rangle \geq(1-\eta) u_{C}(t)
$$

3. The distribution spaces \mathcal{K}_{M}^{\prime} and K_{M}^{\prime}

Let $\mu(\xi), 0 \leq \xi \leq \infty$, denote a continuous increasing function such that $\mu(0)=0, \mu(\infty)=\infty$. For $t \geq 0$ we define

$$
M(t)=\int_{0}^{t} \mu(\xi) d \xi
$$

The function $M(t)$ is an increasing, convex, and continuous function with $M(0)=0$ and $M(\infty)=\infty$. Further we define $M(t)$ for negative t by $M(-t)=$ $M(t)$. Since the derivative $\mu(t)$ of $M(t)$ is unbounded in R, the function $M(t)$ will grow faster than any linear function as $|t| \rightarrow \infty$.

The function $M(t)$ can be defined on \mathbb{R}^{n} by $M\left(t_{1}+t_{2}+\cdots+t_{n}\right)=M\left(t_{1}\right)+$ $M\left(t_{2}\right)+\cdots+M\left(t_{n}\right)$ for all $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$. (Refer to Sec. 4.1 of Chapter 1 in [4] or p. 130 in [5].)

Definition 7. Let $M(x)$ and $\Omega(y)$ be the functions corresponding to $\mu(\xi)$ and $\omega(\eta)$ as above, respectively. Then $M(x)$ and $\Omega(y)$ are called to be dual in the sense of Young if $\mu(\omega(\eta))=\eta$ and $\omega(\mu(\xi))=\xi$.

We have two examples of dual functions in the sense of Young as follow;

$$
\begin{aligned}
& \text { 1. } M(s)=\frac{s^{p}}{p}, \quad \Omega(t)=\frac{t^{q}}{q}, \quad \frac{1}{p}+\frac{1}{q}=1, \quad s, t \geq 0 . \\
& \text { 2. } M(s)=e^{s}-s-1, \Omega(t)=(t+1) \log (t+1)-t, \quad s, t \geq 0 .
\end{aligned}
$$

We list some properties of function $M(x), x \in \mathbb{R}^{n}$.
Lemma 5. For $t \geq 0$ we define $M(t)=\int_{0}^{t} \mu(\xi) d \xi$, where $\mu(\xi)(0 \leq \xi \leq \infty)$ is a continuous increasing function such that $\mu(0)=0$ and $\mu(\infty)=\infty$. Then we have that

$$
M(s)+M(t) \leq M(s+t) \text { for all st } \geq 0
$$

$$
M\left(\frac{t}{k}\right) \leq \frac{M(t)}{k} \text { for all } k>1
$$

Hence if we let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be in \mathbb{R}^{n}, then

$$
\begin{aligned}
& M(x)+M(y) \leq M(x+y) \text { for all } x_{i} y_{i} \geq 0, \quad(i=1,2, \ldots, n) \\
& M\left(\frac{x}{k}\right) \leq \frac{M(x)}{k} \text { for all } k>1 \text { and } x \in \mathbb{R}^{n}
\end{aligned}
$$

We note an important property of dual functions which will be useful later.
Lemma 6 ([5, Lemma 1.1]). Let $M(s)$ and $\Omega(t)$ be defined as in Definition 7, where $s, t \in R$. Then

$$
\text { st } \leq M(s)+\Omega(t) \text { for any } s, t \geq 0
$$

and the equality holds if and only if $t=\mu(s)$ or $s=\omega(t)$.
Hence if we let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be in \mathbb{R}^{n}, then

$$
\langle x, y\rangle \leq M(x)+\Omega(y) \text { for any } x_{i}, y_{i} \geq 0, \quad(i=1,2, \ldots, n)
$$

and the equality holds if and only if $y_{i}=\mu\left(x_{i}\right)$ or $x_{i}=\omega\left(y_{i}\right)$.
For more details about the function $M(x)$ and $\Omega(y)$, we can refer to [4, Chapter 1].

Using the function $M(t)$, we define the space \mathcal{K}_{M} as the space of all functions $\varphi(t)$ in C^{∞} such that

$$
\nu_{k}(\varphi)=\sup _{t \in \mathbb{R}^{n},|\alpha| \leq k} e^{M(k t)}\left|D_{t}^{\alpha} \varphi(t)\right|<\infty, k=1,2, \ldots,
$$

where $D_{t}^{\alpha}=D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} \cdots D_{n}^{\alpha_{n}}$ and $D_{j}^{\alpha_{j}}=-\frac{1}{2 \pi i} \frac{\partial^{\alpha_{j}}}{\left(\partial t_{j}\right)^{\alpha_{j}}}$ and $|\alpha|=\alpha_{1}+\alpha_{2}+$ $\cdots+\alpha_{n}$. The topology in \mathcal{K}_{M} is defined by the countably family of semi-norms $\left\{\nu_{k}\right\}_{k=1}^{\infty}$. It follows that the space \mathcal{K}_{M} becomes a Fréchet space [5] and the identity mapping $\mathcal{D} \hookrightarrow \mathcal{K}_{M} \hookrightarrow \mathcal{E}$ are continuous when \mathcal{E} denotes the space of all C^{∞} functions on \mathbb{R}^{n} and \mathcal{D} the space of all C^{∞} functions with compact support in \mathbb{R}^{n}.

Lemma 7. \mathcal{K}_{M} is a Montel space.
Proof. If B is a bounded set of \mathcal{K}_{M}, then B is a bounded set in C^{∞} since the imbedding $\mathcal{K}_{M} \hookrightarrow C^{\infty}$ is continuous. Since C^{∞} is a Montel space, it suffices to show that B is a relatively compact set in C^{∞}. Let $\left(\phi_{j}\right)$ be a sequence of elements of B such that (ϕ_{j}) converges to ϕ in C^{∞}. Since B is a bounded set of \mathcal{K}_{M}, for all $k \in N$ and all $\alpha \in N^{n}$, there exists a constant $C_{k, \alpha}$ such that

$$
\begin{equation*}
\sup _{t \in \mathbb{R}^{n}}\left|e^{M(k t)} D^{\alpha} \phi_{j}(t)\right| \leq C_{k, \alpha}, \quad \phi_{j} \in B \tag{1}
\end{equation*}
$$

The inequality (1) implies that, given $\epsilon>0$ there is a constant $M>0$ such that for t with $|t|>M$,

$$
\begin{equation*}
\left|e^{M(k t)} D^{\alpha} \phi_{j}(t)\right| \leq \epsilon, \quad \phi_{j} \in B \tag{2}
\end{equation*}
$$

Since $\phi_{j} \rightarrow \phi$ in C^{∞}, (2) implies that

$$
\left|e^{M(k t)} D^{\alpha} \phi(t)\right| \leq \epsilon, \quad|t|>M
$$

Hence $\phi \in \mathcal{K}_{M}$. On the other hand, since $\phi_{j} \rightarrow \phi$ in $C^{\infty},\left(D^{\alpha} \phi_{j}\right)$ converges uniformly to $D^{\alpha} \phi$ on the compact set $\left\{t \in \mathbb{R}^{n}:|t| \leq M\right\}$. This implies that given $\epsilon>0$, we can find an integer j_{0} such that

$$
e^{M(k t)}\left|D^{\alpha} \phi_{j}(t)-D^{\alpha} \phi(t)\right| \leq \epsilon
$$

for all t with $|t| \leq M$ and all $j \geq j_{0}$. Last three inequalities imply that

$$
\sup _{t \in \mathbb{R}^{n}} e^{M(k t)}\left|D^{\alpha} \phi_{j}(t)-D^{\alpha} \phi(t)\right| \leq \epsilon
$$

for all $j \geq j_{0}$; therefore $\phi_{j} \rightarrow \phi$ in \mathcal{K}_{M}. The proof is completed.
We denote by \mathcal{K}_{M}^{\prime} the space of all continuous linear functional on \mathcal{K}_{M}. Clearly when $M(t)=\log (1+|t|), \mathcal{K}_{M}^{\prime}$ is the space of Schwartz's tempered distributions. When $M(t)=|t|, \mathcal{K}_{M}^{\prime}$ is the space of tempered distributions of \mathcal{K}_{1}^{\prime} which is introduced and characterized by J. Sevastião E. Silva [8]. When $M(t)=|t|^{p}, p>1, \mathcal{K}_{M}^{\prime}$ is the space of tempered distributions of $\mathcal{K}_{p}^{\prime}, p>1$, which is introduced and characterized by Sampson and Zielezny [6].

The restriction $\tilde{T}=\left.T\right|_{\mathcal{D}}$ of a functional $T \in \mathcal{K}_{M}^{\prime}$ to \mathcal{D} is a distribution. Since \mathcal{D} is dense in \mathcal{K}_{M}, T is determined by its values on \mathcal{D}. We characterize the distributions in \mathcal{K}_{M}^{\prime} by their growth at infinity.

Lemma 8 ([5, Theorem 2.3]). A distribution $T \in \mathcal{D}$ is in \mathcal{K}_{M}^{\prime} if and only if there exist positive integers k, α and a bounded continuous function $f(t)$ on \mathbb{R}^{n} such that

$$
T=D^{\alpha}\left[e^{M(k t)} f(t)\right]
$$

Let $\phi(t) \in L^{1}\left(\mathbb{R}^{n}\right)$. We define the Fourier transform of $\phi(t)$ by

$$
\hat{\phi}(x)=\mathcal{F}[\phi(t) ; x]=\int_{\mathbb{R}^{n}} \phi(t) e^{2 \pi i\langle x, t\rangle} d t
$$

and the inverse Fourier transform of $\phi(t)$ by

$$
\mathcal{F}^{-1}[\phi(t) ; x]=\int_{\mathbb{R}^{n}} \phi(t) e^{-2 \pi i\langle x, t\rangle} d t
$$

Now we have a Paley-Wiener type theorem for the space \mathcal{K}_{M} from [5, Theorem 4.1]; an entire function $F(\zeta)$ is a Fourier transform of a function φ in \mathcal{K}_{M} if and only if, for every integer $N \geq 0$ and every $\epsilon>0$, there exists a constant C such that

$$
|F(\xi+i \eta)| \leq C(1+|\zeta|)^{-N} e^{\Omega(\epsilon \eta)}, \quad \zeta=\xi+i \eta \in \mathbb{C}^{n}
$$

Let $\mathbf{K}_{\mathbf{M}}$ be the space of Fourier transform of functions in \mathcal{K}_{M}. We define in $\mathbf{K}_{\mathbf{M}}$ a locally convex topology by means of the seminorms

$$
\left.\omega_{k}(\hat{\varphi})=\sup _{\zeta=\xi+i \eta}(1+|\zeta|)^{k} e^{-\Omega\left(\frac{\eta}{k}\right)} \right\rvert\, \hat{\varphi}(\zeta), k=1,2, \ldots, \varphi \in \mathcal{K}_{M}
$$

Lemma 9 ([5, Coro. 4.2]). The Fourier transform is a topological isomorphism of \mathcal{K}_{M} onto $\mathbf{K}_{\mathbf{M}}$.

Let $\mathbf{K}_{\mathbf{M}}^{\prime}$ be the space of continuous linear functional on \mathcal{K}_{M} which equipped with the topology of uniform convergence on all bounded set in $\mathbf{K}_{\mathbf{M}}$. Each distribution T in \mathcal{K}_{M}^{\prime} has a Fourier transform \hat{T} in $\mathbf{K}_{\mathbf{M}}^{\prime}$ defined by Parseval's formula

$$
\langle\hat{T}, \hat{\varphi}\rangle=(2 \pi)^{n}\langle T, \varphi\rangle, \quad \varphi \in \mathcal{K}_{M} .
$$

Moreover, we have:
Lemma 10 ([5, Coro. 4.3]). The Fourier transform is a topological isomorphism of \mathcal{K}_{M}^{\prime} onto $\mathbf{K}_{\mathbf{M}}^{\prime}$.

For further detailed structure theories about \mathcal{K}_{M}^{\prime} and $\mathbf{K}_{\mathbf{M}}^{\prime}$, we can refer to [4] and [5].

4. The analytic spaces $G_{M}(A ; C)$ and $F_{M}(A ; C)$

To find the relations between the increase in certain classes of analytic functions and the properties of their spectral functions, Vladimirov [9, Sec. 26.4] introduced the following class of analytic functions;

Let C be an open cone in \mathbb{R}^{n} and C^{\prime} be an arbitrary compact subcone of C. $p \geq 1$ and $A \geq 0$ are real numbers. A function $f(z)$ belongs to the class $\mathbf{H}_{\mathbf{p}}(\mathbf{A} ; \mathbf{C})$ if $f(z)$ is analytic in the tubular cone $T^{C}=\mathbb{R}^{n}+i C \subset \mathbb{C}^{n}$ and satisfies

$$
|f(z)| \leq K\left(C^{\prime}\right)(1+|z|)^{N}(1+|y|)^{-M} e^{A|y|^{p}}, \quad z=x+i y \in T^{C}
$$

where $K\left(C^{\prime}\right)$ is a constant depending on C^{\prime}, and N and M are nonnegative real numbers which do not depend on C^{\prime}.

Motivated by the works of Vladimirov, R. D. Carmichael introduced two different types of classes of analytic functions in tubes both of which are more general spaces than the class $H_{p}(A ; C)$ as follow;

Let C be an open cone in \mathbb{R}^{n} and C^{\prime} be an arbitrary compact subcone of C. $p \geq 1$ and $A \geq 0$ are real numbers. Let $m>0$. $T\left(C^{\prime} ; m\right)$ denotes the set $T\left(C^{\prime} ; m\right)=\mathbb{R}^{n}+i\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ where $N(0, m)$ is a closed ball in \mathbb{R}^{n} of radius $m>0$ with center at the origin. A function $f(z)$ belongs to the class $\mathbf{G}_{\mathbf{p}}(\mathbf{A} ; \mathbf{C})$ if, for each compact subcone $C^{\prime} \subset C$, there exists a fixed $m=m\left(C^{\prime}\right)>0$ depending on C^{\prime} such that $f(z)$ is analytic in $T\left(C^{\prime} ; m\right)$ and satisfies

$$
|f(z)| \leq K\left(C^{\prime} ; m\right)(1+|z|)^{N} e^{2 \pi A|y|^{p}}, \quad z=x+i y \in T\left(C^{\prime} ; m\right)
$$

where $K\left(C^{\prime} ; m\right)$ is a constant depending on C^{\prime} and on m and N is a nonnegative real number which does not depend on C^{\prime} and on m.

A function $f(z)$ belongs to $\mathbf{F}_{\mathbf{p}}(\mathbf{A} ; \mathbf{C})$ if, for each compact subcone $C^{\prime} \subset C$, $f(z)$ is analytic in $T^{C^{\prime}}=\mathbb{R}^{n}+i C^{\prime}$ and satisfies

$$
|f(z)| \leq K\left(C^{\prime} ; m\right)(1+|z|)^{N} e^{2 \pi A|y|^{p}}, \quad z=x+i y \in T\left(C^{\prime} ; m\right)
$$

where $K\left(C^{\prime} ; m\right)$ is a constant depending on C^{\prime} and on m and N is a nonnegative real number which does not depend on C^{\prime} and on m.

Carmichael studied the relationship between $G_{p}(A ; C)$ (and $F_{p}(A ; C)$), the distributions $\mathcal{K}_{p}^{\prime}, p \geq 1$, and the Fourier transform $\mathbf{K}_{p}^{\prime}, p \geq 1$, of $\mathcal{K}_{p}^{\prime}, p \geq 1$, in [3]. Since $\mathcal{K}_{p}^{\prime} \subset \mathcal{K}_{M}^{\prime}, p \geq 1$, we need more general classes of analytic functions than $G_{p}(A: C)$ or $F_{p}(A ; C)$ to find the relationship between the classes of analytic functions, \mathcal{K}_{M}^{\prime}, and \mathbf{K}_{M}^{\prime} as follow;

For $t \geq 0$, let $M(t)=\int_{0}^{t} \mu(\xi) d \xi$, where $\mu(\xi)(0 \leq \xi \leq \infty)$ is a continuous increasing function such that $\mu(0)=0$ and $\mu(\infty)=\infty$. Let C be an open cone in \mathbb{R}^{n} and C^{\prime} be an arbitrary compact subcone of $C . A \geq 0$ are real numbers. Let $m>0 . T\left(C^{\prime} ; m\right)$ denote the set $T\left(C^{\prime} ; m\right)=\mathbb{R}^{n}+\bar{i}\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ where $N(0, m)$ is a closed ball in \mathbb{R}^{n} of radius $m>0$ with center at the origin.

A function $f(z)$ belongs to the class $\mathbf{G}_{\mathbf{M}}(\mathbf{A} ; \mathbf{C})$ if, for each compact subcone $C^{\prime} \subset C$, there exists a fixed $m=m\left(C^{\prime}\right)>0$ depending on C^{\prime} such that $f(z)$ is analytic in $T\left(C^{\prime} ; m\right)$ and satisfies

$$
|f(z)| \leq K\left(C^{\prime} ; m\right)(1+|z|)^{N} e^{2 \pi M(A y)}, \quad z=x+i y \in T\left(C^{\prime} ; m\right)
$$

where $K\left(C^{\prime} ; m\right)$ is a constant depending on C^{\prime} and on m and N is a nonnegative real number which does not depend on C^{\prime} and on m.

A function $f(z)$ belongs to $\mathbf{F}_{\mathbf{M}}(\mathbf{A} ; \mathbf{C})$ if, for each compact subcone $C^{\prime} \subset C$, $f(z)$ is analytic in $T^{C^{\prime}}=\mathbb{R}^{n}+i C^{\prime}$ and satisfies

$$
|f(z)| \leq K\left(C^{\prime} ; m\right)(1+|z|)^{N} e^{2 \pi M(A y)}, \quad z=x+i y \in T\left(C^{\prime} ; m\right)
$$

where $K\left(C^{\prime} ; m\right)$ is a constant depending on C^{\prime} and on m and N is a nonnegative real number which does not depend on C^{\prime} and on m.

The 2π in the exponential term in the definition of $G_{M}(A ; C)$ and $F_{M}(A ; C)$ simply reflects the way we have defined the Fourier transform in this paper. Obviously we have the following inclusion relation;

$$
F_{M}(A ; C) \subset G_{M}(A ; C), \quad G_{p}(A ; C) \subset G_{M}(A ; C), \quad F_{p}(A ; C) \subset F_{M}(A ; C)
$$

We need three lemmas which will be useful to obtain main results in the next two sections.

Lemma 11. For $t \geq 0$, let $\Omega(t)=\int_{0}^{t} \omega(\xi) d \xi$, where $\omega(\xi)(0 \leq \xi \leq \infty)$ is a continuous increasing function such that $\omega(0)=0$ and $\omega(\infty)=\infty$. Let C be an open connected cone and let C_{*}^{\prime} be an arbitrary compact subcone of $C_{*}=\mathbb{R}^{n} \backslash C^{*}$. Let γ be an n-tuple of nonnegative integers. Let $n \geq 1$ be an integer and let $R>0$. Then we have

$$
\begin{equation*}
(1+|t|)^{n+1+|\gamma|} \leq M_{1} \exp \left[2 \pi R \Omega\left(u_{C}(t)\right)\right] \tag{3}
\end{equation*}
$$

where $M_{1}=M_{1}\left(C_{*}^{\prime}\right)$ depends on $C_{*}^{\prime} \subset C_{*}$.
Hence for $A>0$

$$
\begin{equation*}
(1+|t|)^{n+1+|\gamma|} \leq M_{2} \exp \left[2 \pi R \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \tag{4}
\end{equation*}
$$

where $M_{2}=M_{2}\left(C_{*}^{\prime}, A\right)$ depends on $C_{*}^{\prime} \subset C_{*}$ and on A.
Proof. From Lemma 2, given $C_{*}^{\prime} \subset C_{*}$ there exists $\xi=\xi\left(C_{*}^{\prime}\right)$, depending on C_{*}^{\prime}, such that

$$
\begin{equation*}
\xi|t| \leq u_{C}(t) \leq|t|, \quad t \in C_{*}^{\prime} . \tag{5}
\end{equation*}
$$

Hence, for any $R>0$,

$$
0<\exp [2 \pi R \Omega(\xi t)] \leq \exp \left[2 \pi R \Omega\left(u_{C}(t)\right)\right], \quad t \in C_{*}^{\prime}
$$

Since the function $\Omega(t)$ in the hypothesis grows faster than any linear function as $|t| \rightarrow \infty$ for $t \in \mathbb{R}^{n}$,

$$
(1+|t|)^{-n-1-|\gamma|} \exp [2 \pi R \Omega(\xi t)] \rightarrow \infty \text { as }|t| \rightarrow \infty
$$

for $t \in \mathbb{R}^{n}$, hence

$$
\begin{equation*}
(1+|t|)^{-n-1-|\gamma|} \exp \left[2 \pi R \Omega\left(u_{C}(t)\right)\right] \rightarrow \infty \text { as }|t| \rightarrow \infty \tag{6}
\end{equation*}
$$

for $t \in C_{*}^{\prime} \subset C_{*}$. Let $N(0, m)$ be a closed ball of the origin in \mathbb{R}^{n} of radius $m>0$. We can find $O_{m}>1$, depending on m, such that

$$
\begin{equation*}
Q_{m}(1+|t|)^{-n-1-|\gamma|} \exp [2 \pi R \Omega(\xi t)] \geq 1, \quad t \in N(0, m) \tag{7}
\end{equation*}
$$

By Lemma 2 and (7),

$$
\begin{equation*}
Q_{m}(1+|t|)^{-n-1-|\gamma|} \exp \left[2 \pi R \Omega\left(u_{C}(t)\right)\right] \geq 1, \quad t \in N(0, m) \cap C_{*}^{\prime} \tag{8}
\end{equation*}
$$

Thus we have (3) from (6) and (8). Now if $A>0$, we have from (5) that given $C_{*}^{\prime} \subset C_{*}$, there exists $\xi=\xi\left(C_{*}^{\prime}\right)$, depending on C_{*}^{\prime}, such that

$$
\begin{equation*}
\frac{\xi|t|}{A} \leq \frac{u_{C}(t)}{A} \leq \frac{|t|}{A}, \quad t \in C_{*}^{\prime} . \tag{9}
\end{equation*}
$$

If we replace (5) by (9), we have from the same process as above that

$$
\begin{equation*}
\left(1+\left|\frac{t}{A}\right|\right)^{n+1+|\gamma|} \leq M_{1} \exp \left[2 \pi R \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \tag{10}
\end{equation*}
$$

But since $(1+|t|) \leq C_{1}(1+|t| / A)$ when $C_{1}=C_{1}(A)$, depending on A, equals A if $A \geq 1$ and equals 1 if $0<A<1$, we have (4) from (10).
Lemma 12. For $t \geq 0$, let $\Omega(t)=\int_{0}^{t} \omega(\xi) d \xi$, where $\omega(\xi)(0 \leq \xi \leq \infty)$ is a continuous increasing function such that $\omega(0)=0$ and $\omega(\infty)=\infty$. Let C be an open connected cone and let C^{\prime} be an arbitrary open compact subcone of $\mathcal{O}(C)$. Let C_{*}^{\prime} be an arbitrary compact subcone of $C_{*}=\mathbb{R}^{n} \backslash C^{*}$. Let $A>0$. Let $g(t)$ be a continuous function of $t \in \mathbb{R}^{n}$ which satisfies

$$
|g(t)| \leq K\left(C_{*}^{\prime}, \eta\right) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right], t \in C_{*}^{\prime} \subset C_{*}
$$

for any $\eta \in(0,1)$ with $1-3 \eta>0$, where $K\left(C_{*}^{\prime}, \eta\right)$ is a constant, depending on C_{*}^{\prime} and on η. Let $z_{0} \in T^{C^{\prime}}=\mathbb{R}^{n}+i C^{\prime}$ be an arbitrary but fixed point and let
$z \in N^{\prime}\left(z_{0}, r\right) \subset T^{C^{\prime}}$, where $N^{\prime}\left(z_{0}, r\right)$ is an open neighborhood of z_{0} with radius $r>0$ whose closure is in $T^{C^{\prime}}$. Then for any n-tuple γ of nonnegative integer,

$$
h_{C_{*}^{\prime}}^{\gamma, g}(z)=\int_{C_{*}^{\prime}} t^{\gamma} g(t) e^{2 \pi i\langle z, t\rangle} d t
$$

converges absolutely and uniformly for $z \in N^{\prime}\left(z_{0}, r\right)$.
Proof. From Lemma 1 and assumption about the estimation of $g(t)$, for $z=$ $x+i y \in N^{\prime}\left(z_{0}, r\right)$, there exists a real number T with $|y|=|\operatorname{Im}(z)| \leq T$ such that for $A>0$ and any $\eta>0$ with $1-2 \eta>0$

$$
\begin{align*}
\left|h_{C_{*}^{\prime}}^{\gamma, g}(t)\right| \leq & K\left(C_{*}^{\prime}, \eta\right) \int_{C_{*}^{\prime}}\left|t^{\gamma}\right| e^{-2 \pi\langle y, t\rangle} \tag{11}\\
& \cdot \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] d t \\
\leq & K\left(C_{*}^{\prime}, \eta\right) \int_{C_{*}^{\prime}} \frac{(1+|t|)^{n+1+|\gamma|}}{(1+|t|)^{n+1}} \exp \left[2 \pi T \rho_{C} u_{C}(t)\right] \\
& \cdot \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] d t
\end{align*}
$$

where n is the dimension.
By Lemma 2 and Lemma 11 with $R=\eta$, for $t \in C_{*}^{\prime} \subset C_{*}$, there exists a $\xi=\xi\left(C_{*}^{\prime}\right)$ such that

$$
\begin{align*}
& \exp \left[2 \pi T \rho_{C} u_{C}(t)-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \cdot(1+|t|)^{n+1+|\gamma|} \tag{12}\\
\leq & M\left(C_{*}^{\prime}, A\right) \exp \left[2 \pi T \rho_{C} u_{C}(t)-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \\
& \cdot \exp \left[2 \pi \eta \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \\
\leq & M\left(C_{*}^{\prime}, A\right) \exp \left[2 \pi T \rho_{C}|t|-2 \pi(1-3 \eta) \Omega\left(\frac{\xi t}{A}\right)\right]
\end{align*}
$$

Now consider the function of x defined by

$$
f(x)=2 \pi T \rho_{C} x-2 \pi(1-3 \eta) \Omega\left(\frac{\xi x}{A}\right), x>0
$$

Since $\Omega(x)=\int_{0}^{x} \omega(t) d t$, we have $\Omega^{\prime}(x)=\omega(x)$, hence

$$
f^{\prime}(x)=2 \pi T \rho_{C}-2 \pi(1-3 \eta) \omega\left(\frac{\xi x}{A}\right)
$$

Since $\omega(x)$ is a continuous increasing function, $\omega(x)$ has its inverse function $\omega^{-1}(x)$. Hence if we take $\eta \in(0,1), f(x)$ attains its maximum at

$$
x=\frac{A}{\xi} \cdot \omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)>0 .
$$

Hence, for $t \in C_{*}^{\prime} \subset C_{*}$, if we take $\eta \in(0,1)$ with $1-3 \eta>0$,

$$
\begin{align*}
& \exp \left[2 \pi T \rho_{C}|t|-2 \pi(1-3 \eta) \Omega\left(\frac{\xi t}{A}\right)\right] \tag{13}\\
\leq & \exp \left[2 \pi T \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)-2 \pi(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right)\right]
\end{align*}
$$

Thus we have from (11), (12), and (13) that

$$
\begin{align*}
\left|h_{C_{*}^{\prime}}^{\gamma, g}(z)\right| \leq & M\left(C_{*}^{\prime}, A\right) K\left(C_{*}^{\prime}, \eta\right) \exp \left[2 \pi T \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right. \tag{14}\\
& \left.-2 \pi(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right)\right] \cdot \int_{C_{*}^{\prime}} \frac{1}{(1+|t|)^{n+1}} d t \\
\leq & K^{\prime}\left(C_{*}^{\prime}, A, \eta\right) \exp \left[2 \pi T \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right. \\
& \left.-2 \pi(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right)\right]
\end{align*}
$$

for all $z \in N^{\prime}\left(z_{0}, r\right)$, where $K^{\prime}\left(C_{*}^{\prime}, A, \eta\right)$ is a constant depending on fixed C_{*}^{\prime}, on fixed $A>0$, and on fixed $\eta \in(0,1)$ with $1-3 \eta>0$. Since the last term of (14) is independent of $z \in N^{\prime}\left(z_{0}, r\right)$, the function $h_{C_{*}^{\prime}}^{\gamma, g}(z)$ converges absolutely and uniformly for $z \in N^{\prime}\left(z_{0}, r\right)$.

Remark. The estimation of inequalities in (14) will be continued under some additional conditions in Theorem 2 of the next section.
Lemma 13. Let C be an open connected cone and let C^{\prime} be an arbitrary open compact subcone of $\mathcal{O}(C)$. Let $\left(C^{*}\right)^{\prime}$ be an open cone as in Lemma 3 and let $C_{*}^{\prime}=\mathbb{R}^{n} \backslash\left(C^{*}\right)^{\prime} \subset C_{*}$. Let $z_{0} \in T\left(C^{\prime} ; m\right)=\mathbb{R}^{n}+i\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ be arbitrary but fixed and let $z \in N^{\prime}\left(z_{0}, r\right) \subset T\left(C^{\prime} ; m\right)$, where $N^{\prime}\left(z_{0}, r\right)$ is an open neighborhood of z_{0} with radius $r>0$ whose closure is in $T\left(C^{\prime} ; m\right)$. Let $g(t)$ satisfies

$$
\begin{equation*}
|g(t)| \leq K e^{k|t|}, t \in\left(C^{*}\right)^{\prime} \tag{15}
\end{equation*}
$$

for some constants K and $k \geq 0$. Then for any n-tuple γ of nonnegative integers,

$$
h_{\left(C_{*}\right)^{\prime}}^{\gamma, g}(z)=\int_{\left(C_{*}\right)^{\prime}} t^{\gamma} g(t) e^{2 \pi i\langle z, t\rangle} d t
$$

converges absolutely and uniformly for $z \in N^{\prime}\left(z_{0}, r\right)$.
Proof. By Lemma 3, there exist a number $\delta=\delta\left(C^{\prime}\right)$ and an open cone $\left(C^{*}\right)^{\prime}$ both depending on C^{\prime} such that $C^{*} \subset\left(C^{*}\right)^{\prime}$ and

$$
\begin{equation*}
\langle y, t\rangle \geq \delta|y||t|, \quad y \in C^{\prime} \subset \mathcal{O}(C), t \in\left(C^{*}\right)^{\prime} \tag{16}
\end{equation*}
$$

We choose the real number $m=m\left(C^{\prime}\right)>0$ depending on C^{\prime} such that

$$
\begin{equation*}
m=\frac{k}{(2 \pi \delta)}+1 \tag{17}
\end{equation*}
$$

where $k \geq 0$ is as in (15). Then if $y \in C^{\prime}$ with $|y|>m, k-2 \pi \delta|y|<-2 \pi \delta<0$. For the chosen $m>0$ in (17), let z_{0} be an arbitrary but fixed point in $T\left(C^{\prime} ; m\right)$. Choose $N^{\prime}\left(z_{0}, r\right)$ whose closure is in $T\left(C^{\prime} ; m\right)$. Then we have from (16) and (17) that for $z \in N^{\prime}\left(z_{0}, r\right)$,

$$
\begin{align*}
&\left|h_{C_{*}^{\prime}}^{\gamma, g}(z)\right| \tag{18}\\
&=\left|\int_{\left(C^{*}\right)^{\prime}} t^{\gamma} g(t) e^{2 \pi i\langle z, t\rangle} d t\right| \\
& \leq K \int_{\left(C^{*}\right)^{\prime}}\left|t^{\gamma}\right| e^{k|t|} e^{-2 \pi\langle y, t\rangle} d t \\
& \leq K \int_{\left(C^{*}\right)^{\prime}}\left|t^{\gamma}\right| \exp [(k-2 \pi \delta|y|)|t|] d t \leq K \int_{\left(C^{*}\right)^{\prime}}\left|t^{\gamma}\right| \exp [-2 \pi \delta|t|] d t \\
& \leq K Z_{n} \int_{0}^{\infty} s^{|\gamma|+n-1} \exp [-2 \pi \delta s] d s=K Z_{n}(|\gamma|+n-1)!(2 \pi \delta)^{-|\gamma|-n} .
\end{align*}
$$

Here we have used [7, Theorem 32, p. 39] in the second to last step in (18) and integration by parts $(|\gamma|+n-1)$ times in the last step in (18), where K is the constant as in (15) and Z_{n} is the area of the unit sphere in \mathbb{R}^{n}. Since the last term of (18) is independent of $z \in N^{\prime}\left(z_{0}, r\right)$, the function $h_{C_{*}^{\prime}}^{\gamma, g}(z)$ converges absolutely and uniformly for $z \in N^{\prime}\left(z_{0}, r\right)$.

5. The relationship $G_{M}(A ; C), \mathcal{K}_{M}^{\prime}$, and K_{M}^{\prime}

In this section, we show that elements of $G_{M}(A ; C)$ can be represented as the Fourier-Laplace transform of distributions \mathcal{K}_{M}^{\prime}. Also we present representations of $G_{M}(A ; C)$ as elements in $\mathbf{K}_{\mathrm{M}}^{\prime}$ in terms of Fourier transforms in $\mathbf{K}_{\mathbf{M}}^{\prime}$ of certain elements in \mathcal{K}_{M}^{\prime} and strong boundedness for $G_{M}(A ; C)$ as elements in $\mathbf{K}_{\mathrm{M}}^{\prime}$.
Theorem 1. Let $M(x)$ and $\Omega(y)$ be the functions as in Definition 7. For the open connected cone C, let $f(z) \in G_{M}(A ; C)$. For any compact subcone $C^{\prime} \subset C$, let $m=m\left(C^{\prime}\right)$ be a fixed real number which depends on C^{\prime} as in the definition of $G_{M}(A ; C)$. Then there exist a unique element $V=D_{t}^{\alpha}(g(t)) \in$ \mathcal{K}_{M}^{\prime}, where α is an n-tuple of nonnegative integers and $g(t)$ is a continuous function of $t \in \mathbb{R}^{n}$ such that the following are hold.
(I) For $A \geq 0$

$$
\begin{equation*}
f(z)=z^{\alpha} \mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} g(t) ; x\right], \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{19}
\end{equation*}
$$

where the Fourier transform is taken in the L^{2} sense.
(II) For $A \geq 0, g(t)$ satisfies

$$
\begin{equation*}
|g(t)| \leq K\left(C^{\prime}, m\right) \exp [2 \pi(M(A y)+|y||t|)], \quad t \in \mathbb{R}^{n}, \tag{20}
\end{equation*}
$$

where $C^{\prime} \subset C$ is arbitrary and $K\left(C^{\prime}, m\right)$ depends on C^{\prime} and on m. Inequality (20) is independent of $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ and $\operatorname{supp}(g)=\operatorname{supp}(V) \subseteq\{t$: $\left.u_{C}(t) \leq A\right\}$.
(III) For $A>0$ and any compact subcone of $C_{*}^{\prime} \subset C_{*}=\mathbb{R}^{n} \backslash C^{*}, g(t)$ satisfies

$$
\begin{equation*}
|g(t)| \leq M\left(C_{*}^{\prime}, \eta\right) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right], t \in C_{*}^{\prime} \tag{21}
\end{equation*}
$$

where any $\eta \in(0,1)$ is such that $1-2 \eta>0$ and $M\left(C_{*}^{\prime}, \eta\right)$ is a constant depending on C_{*}^{\prime} and on η.
(IV) Let $A \geq 0$. If $g(t)$ satisfies that $|g(t)| \leq K e^{k|t|}$ for any $t \in\left(C^{*}\right)^{\prime}$ and for some constants K and $k>0$, then

$$
\begin{equation*}
f(z)=\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle, \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{22}
\end{equation*}
$$

(V) For $A \geq 0$,

$$
\begin{equation*}
f(z)=\mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} V_{t}\right], \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{23}
\end{equation*}
$$

where the equality in (23) holds in $\mathbf{K}_{\mathbf{M}}^{\prime}$.
(VI)

$$
\begin{equation*}
\left\{f(z): y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),|y| \leq Q_{m}\right\} \tag{24}
\end{equation*}
$$

is strongly bounded in $\mathbf{K}_{\mathbf{M}}^{\prime}$, where $Q_{m}>m>0$.
Proof. Let C be an open connected cone and let C^{\prime} be an arbitrary open compact subcone of C. For any compact subcone $C^{\prime} \subset C$, let $m=m\left(C^{\prime}\right)$ be a fixed real number which depends on C^{\prime} as in the definition of $G_{M}(A ; C)$ corresponding to $f(z)$. Since $f(z) \in G_{M}(A ; C)$, we can choose an n-tuple α of nonnegative integers which is independent of C^{\prime} and of m such that for $z=x+i y \in T\left(C^{\prime} ; m\right)$ and $\epsilon>0$,

$$
\begin{equation*}
\left|z^{-\alpha} f(z)\right| \leq K^{\prime}\left(C^{\prime} ; m\right)(1+|z|)^{-n-\epsilon} e^{2 \pi M(A y)} \tag{25}
\end{equation*}
$$

where $K^{\prime}\left(C^{\prime} ; m\right)$ is a constant and n is a dimension. Put

$$
\begin{equation*}
g(t)=\int_{\mathbb{R}^{n}} z^{-\alpha} f(z) e^{-2 \pi i\langle z, t\rangle} d x, \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{26}
\end{equation*}
$$

which is a continuous function of $t \in \mathbb{R}^{n}$. By [2, Theorem 1, p. 846] and (25), $g(t)$ is independent of $y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$.
Proof of (I). We have from (25) that $z^{-\alpha} f(z) \in L_{1} \cap L_{2}$ as a function of $x=\operatorname{Re}(z)$ for an arbitrary $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$. Thus from (26),

$$
\begin{equation*}
e^{-2 \pi\langle y, t\rangle} g(t)=\mathcal{F}^{-1}\left[z^{-\alpha} f(z) ; t\right], \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{27}
\end{equation*}
$$

where the Fourier transform is taken in the L_{2} sense. By the Plancherel theorem, $e^{-2 \pi\langle y, t\rangle} g(t) \in L_{2}$ and

$$
\begin{equation*}
z^{-\alpha} f(z)=\mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} g(t) ; x\right], \quad z=x+i y \in T\left(C^{\prime} ; m\right) \tag{28}
\end{equation*}
$$

where the Fourier transform is taken in the L_{1} or L_{2} sense. This complete the proof of (I).
Proof of (II). From (25) and (26),

$$
\begin{equation*}
|g(t)| \leq K^{\prime}\left(C^{\prime} ; m\right) e^{2 \pi M(A y)} e^{2 \pi\langle y, t\rangle} \int_{\mathbb{R}^{n}}(1+|x|)^{-n-\epsilon} d x \tag{29}
\end{equation*}
$$

$$
\leq K^{\prime \prime}\left(C^{\prime} ; m\right) \exp [2 \pi(M(A y)+\langle y, t\rangle)]
$$

where $K^{\prime \prime}\left(C^{\prime} ; m\right)$ is a constant. Since $g(t)$ is independent of $y=\operatorname{Im}(z) \in$ $\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),(29)$ holds independently of $y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap\right.\right.$ $N(0, m))$). From exactly the same process in [1, pp. 846-847], we have that $\operatorname{supp}(g)=\operatorname{supp}(V) \subseteq\left\{t: u_{C}(t) \leq A\right\}$. This complete the proof of (II).

Consider

$$
\begin{equation*}
V=D_{t}^{\alpha}(g(t)) \tag{30}
\end{equation*}
$$

Since $g(t)$ is a continuous function and satisfies (II), $g(t) \in \mathcal{K}_{M}^{\prime}$ by Lemma 8 , hence $V=D_{t}^{\alpha}(g(t)) \in \mathcal{K}_{M}^{\prime}$. In fact $V=D_{t}^{\alpha}(g(t)) \in \mathcal{K}_{1}^{\prime} \subset \mathcal{K}_{p}^{\prime}, p>1$.
Proof of (III). Let C_{*}^{\prime} be an arbitrary but fixed compact subcone of C_{*}. By Lemma 4, for any $\eta \in(0,1)$, there exists a compact subcone $C^{\prime}=C^{\prime}\left(C_{*}^{\prime}, \eta\right)$ of $C \subset \mathcal{O}(C)$, depending on C_{*}^{\prime} and on η, such that we can find a point $y_{t}^{0} \in \operatorname{Pr}\left(C^{\prime}\right)$ where

$$
-\left\langle t, y_{t}^{0}\right\rangle \geq(1-\eta) u_{C}(t)
$$

for any $t \in C_{*}^{\prime}$. Put

$$
\begin{equation*}
y_{t}=\frac{1}{A} y_{t}^{0}\left|M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right| . \tag{31}
\end{equation*}
$$

Since C^{\prime} is a cone and $y_{t}^{0} \in \operatorname{Pr}\left(C^{\prime}\right), y_{t} \in C^{\prime} \subset C$ for any $t \in C_{*}^{\prime}$. Choose a real number $R>0$ such that

$$
\begin{equation*}
R>\frac{A\left(\Omega^{-1}(M(A m))\right)}{\xi} \tag{32}
\end{equation*}
$$

where $m=m\left(C^{\prime}\right)$ is as in the definition of $G_{M}(A ; C)$ corresponding to $f(z)$ and $\xi=\xi\left(C_{*}^{\prime}\right)$ is as in Lemma 2. Then for $t \in C_{*}^{\prime}$ with $|t|>R>0$, we have from Lemma 2, (31), and (32) that

$$
\begin{align*}
\left|y_{t}\right| & =\frac{1}{A}\left|M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right| \geq \frac{1}{A}\left|M^{-1}\left(\Omega\left(\frac{\xi t}{A}\right)\right)\right| \tag{33}\\
& \geq \frac{1}{A}\left|M^{-1}\left(\Omega\left(\frac{\xi R}{A}\right)\right)\right| \geq m .
\end{align*}
$$

Hence if $t \in C_{*}^{\prime}$ with $|t|>R>0, y_{t} \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$. We have from (II) that for $t \in C_{*}^{\prime}$ with $|t|>R$

$$
\begin{equation*}
|g(t)| \leq K\left(C^{\prime}, m\right) \exp \left[2 \pi\left(M\left(A y_{t}\right)+\left\langle y_{t}, t\right\rangle\right)\right] . \tag{34}
\end{equation*}
$$

By Lemma 4 and (31), we have for all $t \in C_{*}^{\prime}$ that

$$
\begin{align*}
\left\langle y_{t}, t\right\rangle & =\frac{1}{A}\left|M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right|\left\langle y_{t}^{0}, t\right\rangle \tag{35}\\
& \leq-(1-\eta) \frac{1}{A} u_{C}(t)\left|M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right| .
\end{align*}
$$

Since $\left|y_{t}^{0}\right|=1$, we have from (31) that

$$
\begin{equation*}
M\left(A y_{t}\right)=\Omega\left(\frac{u_{C}(t)}{A}\right) \tag{36}
\end{equation*}
$$

Applying (35) and (36) to (29), we have for all $t \in C_{*}^{\prime}$ with $|t|>R$ that

$$
\begin{equation*}
|g(t)| \leq K\left(C^{\prime}, m\right) \exp \left[2 \pi \Omega\left(\frac{u_{C}(t)}{A}\right)-2 \pi(1-\eta) \frac{1}{A} u_{C}(t) M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right] \tag{37}
\end{equation*}
$$

Using the Young's inequality in Lemma 6,

$$
\begin{align*}
u_{C}(t) M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right) & =A \frac{u_{C}(t)}{A} M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right) \tag{38}\\
& \leq A\left(M\left(M^{-1}\left(\Omega\left(\frac{u_{C}(t)}{A}\right)\right)\right)+\Omega\left(\frac{u_{C}(t)}{A}\right)\right) \\
& =2 A \Omega\left(\frac{u_{C}(t)}{A}\right)
\end{align*}
$$

Applying (38) to (37), we have for all $t \in C_{*}^{\prime}$ with $|t|>R$ that

$$
\begin{equation*}
|g(t)| \leq K\left(C^{\prime}, m\right) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \tag{39}
\end{equation*}
$$

We find the estimation like (39) for $t \in C_{*}^{\prime}$ with $|t| \leq R$ for a fixed $R>0$ of (32). Put

$$
\begin{equation*}
y_{t}^{\prime}=Q y_{t}^{0} \tag{40}
\end{equation*}
$$

for a $y_{t}^{0} \in \operatorname{Pr}\left(C^{\prime}\right)$ corresponding to $t \in C_{*}^{\prime} \subset C_{*}$ and a fixed $Q>m>0$.
Then since $y_{t}^{0} \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ and the estimation (29) of (II) holds for $t \in C_{*}^{\prime} \subset C_{*}$ independently of $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right.$, we have from (29), Lemma 4, and the fact that $\left|y_{t}^{0}\right|=1$ that for $t \in C_{*}^{\prime}$,
(41) $\quad|g(t)| \leq K\left(C^{\prime}, m\right) \exp [2 \pi M(A Q)] \cdot \exp \left[-2 \pi Q(1-\eta) u_{C}(t)\right]$.

Since $\eta \in(0,1)$ and $u_{C}(t)>0$ for $t \in C_{*}^{\prime} \subset C_{*}$, we have that

$$
\begin{equation*}
\exp \left[-2 \pi Q(1-\eta) u_{C}(t)\right] \leq 1, t \in C_{*}^{\prime} \subset C_{*} \tag{42}
\end{equation*}
$$

From (41) and Lemma 2, if we take $\eta \in(0,1)$ with $1-2 \eta>0$, we have for $t \in C_{*}^{\prime}$ with $|t| \leq R$ that
(43) $g(t) \leq K\left(C^{\prime}, m\right) \exp [2 \pi M(A Q)] \cdot \exp \left[-2 \pi Q(1-\eta) u_{C}(t)\right]$

$$
\begin{aligned}
\leq & K\left(C^{\prime}, m\right) \exp [2 \pi M(A Q)] \\
= & K\left(C^{\prime}, m\right) \exp [2 \pi M(A Q)] \\
& \cdot \exp \left[2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \cdot \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \\
\leq & K\left(C^{\prime}, m\right) \exp [2 \pi M(A Q)]
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \exp \left[2 \pi(1-2 \eta) \Omega\left(\frac{R}{A}\right)\right] \cdot \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right] \\
= & K\left(C^{\prime}, m\right) C_{A, Q}(\eta) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right],
\end{aligned}
$$

where the constant $K\left(C^{\prime}, m\right)$ depends on C^{\prime} and on m and the constant $C_{A, Q}(\eta)$ depends on η for two fixed constants A and Q. Since $C^{\prime}=C^{\prime}\left(C_{*}^{\prime}, \eta\right)$ depends on C_{*}^{\prime} and on η and $m=m\left(C^{\prime}\right)$ depends on $C^{\prime}, K\left(C^{\prime}, m\right) C_{A, Q}(\eta)$ depends on C_{*}^{\prime} and on η for two fixed constants A and Q. Thus we can find a constant $M\left(C_{*}^{\prime}, \eta\right)$, depending on $C_{*}^{\prime} \subset C_{*}$ and on η, such that if t is an element of $C_{*}^{\prime} \subset C_{*}$, then (21) holds for any $\eta \in(0,1)$ with $1-2 \eta>0$. This completes the proof of (III).
Proof of (IV). Firstly, in order to show that the Fourier transform in (19) can be taken in the L_{1} sense, we will show that $\left(e^{-2 \pi\langle y, t\rangle} g(t)\right) \in L^{P}, 1 \leq p<\infty$, for $A>0$ and $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$. Let $A>0$ and let p be arbitrary with $1 \leq p<\infty$. If we let y be arbitrary but fixed in $\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$, then $y \in C^{\prime}$ with $|y|>m>0$. Also if we choose a positive real number ζ such that $0<m /|y|<\zeta<1$, then $\zeta y \in C^{\prime}$ and $|\zeta y|>m$, hence $\zeta y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$. Then we have from (29) that

$$
\begin{align*}
\left|e^{-2 \pi\langle y, t\rangle} g(t)\right|^{p} & \leq K\left(C^{\prime}, m\right) e^{-2 \pi p\langle y, t\rangle} \exp [2 \pi p(M(A \zeta y)+\langle\zeta y, t\rangle)] \tag{44}\\
& \leq K\left(C^{\prime}, m\right) \exp [2 \pi p(M(A \zeta y)] \cdot \exp [-2 \pi p((1-\zeta)\langle y, t\rangle)]
\end{align*}
$$

for all $t \in \mathbb{R}^{n}$. We have from the fact that $(1-\zeta)>0$, Lemma 3, (40), and $[7$, p. 39, Theorem 3.2] that

$$
\begin{align*}
& \int_{\left(C^{*}\right)^{\prime}}\left|e^{-2 \pi\langle y, t\rangle} g(t)\right|^{p} d t \tag{45}\\
\leq & K^{p}\left(C^{\prime}, m\right) \exp [2 \pi p M(A \zeta y)] \int_{\left(C^{*}\right)^{\prime}} \exp [-2 \pi p \delta(1-\zeta)|y||t|] d t \\
\leq & K^{p}\left(C^{\prime}, m\right) Z_{n} \exp [2 \pi p M(A \zeta y)] \int_{0}^{\infty} s^{n-1} \exp [-2 \pi p \delta(1-\zeta)|y| s] d s \\
= & K^{p}\left(C^{\prime}, m\right) Z_{n} \exp [2 \pi p M(A \zeta y)](n-1)!(2 \pi p \delta(1-\zeta)|y|)^{-n} .
\end{align*}
$$

Here we have used the same techniques as in (18) in the last two steps in (45), where Z_{n} is the area of the unit sphere in \mathbb{R}^{n}.

Put $C_{*}^{\prime}=\mathbb{R}^{n} \backslash\left(C^{*}\right)^{\prime}$. Since $C^{*} \subset\left(C^{*}\right)^{\prime}$ and $\left(C^{*}\right)^{\prime}$ is an open cone, C_{*}^{\prime} is a compact subcone of C_{*} and (III) holds for C_{*}^{\prime}. Then we have from (14) that

$$
\begin{align*}
& \int_{C_{*}^{\prime}}\left|e^{-2 \pi\langle y, t\rangle} g(t)\right|^{p} d t \tag{46}\\
\leq & K^{\prime}\left(C_{*}^{\prime}, A, \eta\right) \exp \left[2 \pi p T \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right. \\
& \left.-2 \pi p(1-\eta) \Omega\left(\omega^{-1}\left(\frac{T \rho_{C}}{1-3 \eta}\right)\right)\right],
\end{align*}
$$

where $K^{\prime}\left(C_{*}^{\prime}, A, \eta\right)$ is a constant depending on C_{*}^{\prime}, on a fixed $\eta \in(0,1)$, and on a fixed $A>0$. Here $\xi=\xi\left(C_{*}^{\prime}\right)$ is the number in Lemma 2.

The open cone $\left(C^{*}\right)^{\prime}$ in (45) is fixed depending on the compact subcone $C^{\prime} \subset \mathcal{O}(C)$. Then the compact subcone $C_{*}^{\prime} \subset C_{*}$ in (46) was defined by $C_{*}^{\prime}=\mathbb{R}^{n} \backslash\left(C^{*}\right)^{\prime}$. Since $\left(C^{*}\right)^{\prime} \cup C_{*}^{\prime}=\mathbb{R}^{n}$ and $\left(C^{*}\right)^{\prime} \cap C_{*}^{\prime}=\emptyset$, we have from (45) and (46) that $\left(e^{-2 \pi\langle y, t\rangle} g(t)\right) \in L^{P}, 1 \leq p<\infty$, for $A>0$ and $y \in$ $\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$.

Now if $A=0$, then $g(t)$ satisfies (29) and supp $(g) \subseteq C^{*}$. The open cone $\left(C^{*}\right)^{\prime}$ for which Lemma 3 holds contains C^{*}, hence we have from (45) that $\left(e^{-2 \pi\langle y, t\rangle} g(t)\right) \in L^{P}, 1 \leq p<\infty$, for $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$.

Thus for either of the cases $A>0$ or $A=0$, the Fourier transform in (15) can be taken in the L_{1} sense.

Secondly, we show that $\left\langle V, e^{2 \pi\langle z, t\rangle}\right\rangle$ is well defined on $T\left(C^{\prime} ; m\right)$. We consider

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} g(t) e^{2 \pi i\langle z, t\rangle} d t, \quad z \in T\left(C^{\prime} ; m\right) \tag{47}
\end{equation*}
$$

Since $\left(C^{*}\right)^{\prime} \cap C_{*}^{\prime}=\emptyset$ and $\left(C^{*}\right)^{\prime} \cup C_{*}^{\prime}=\mathbb{R}^{n}$, (47) can be rewrite as

$$
\begin{align*}
\int_{\mathbb{R}^{n}} g(t) e^{2 \pi i\langle z, t\rangle} d t & =\int_{C_{*}^{\prime}} g(t) e^{2 \pi i\langle z, t\rangle} d t+\int_{\left(C^{*}\right)^{\prime}} g(t) e^{2 \pi i\langle z, t\rangle} d t \tag{48}\\
& =h_{C_{*}^{0, g}}^{0, g}+h_{\left(C^{*}\right)^{\prime}}^{0, g}
\end{align*}
$$

Here $h_{C_{*}^{\prime}}^{0, g}$ and $h_{\left(C^{*}\right)!}^{0, g}$, are the functions corresponding to $(\gamma, g)=(0, g)$ in Lemma 12 and Lemma 13 , respectively. Since $T\left(C^{\prime} ; m\right) \subset T^{C^{\prime}}, h_{C_{*}^{\prime}}^{0, g}$ converges absolutely and uniformly on $T^{C^{\prime}}$ by Lemma 12 and $h_{\left(C^{*}\right)}^{0, g}$, converges absolutely and uniformly on $T\left(C^{\prime} ; m\right)$ by Lemma $13,\left\langle V, e^{2 \pi\langle z, t\rangle}\right\rangle$ is well-defined on $T\left(C^{\prime} ; m\right)$.

Hence since the Fourier transform in (19) can be taken in the L_{1} sense and $\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle$ is well-defined on $T\left(C^{\prime} ; m\right)$, if we use differentiation in the distributional sense, then we have that

$$
\begin{align*}
\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle & =(-1)^{|\alpha|}\left\langle g(t), D_{t}^{\alpha}\left(e^{2 \pi i\langle z, t\rangle}\right)\right\rangle \tag{49}\\
& =z^{\alpha} \int_{\mathbb{R}^{n}} g(t) e^{2 \pi i\langle z, t\rangle} d t=z^{\alpha} \mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} g(t) ; x\right]
\end{align*}
$$

for $z \in T\left(C^{\prime} ; m\right)$ and the Fourier transform is taken in either the L^{1} or L^{2} sense. From (19) and (49) we have (22). This completes the proof of (IV).
Proof of (V). The proof of (V) follows from only replacing $\mathcal{K}_{r}, \mathbf{K}_{\mathbf{r}}, \mathcal{K}_{r}^{\prime}$, and $\mathbf{K}_{\mathbf{r}}^{\prime}$ in proving (7.3) of [3, pp. 1056-1057] by $\mathcal{K}_{M}, \mathbf{K}_{\mathbf{M}}, \mathcal{K}_{M}^{\prime}$, and $\mathbf{K}_{\mathbf{M}}^{\prime}$, respectively.

Proof of (VI). Firstly, we show that $\left\{e^{-2 \pi\langle y, t\rangle} V_{t}: y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)\right.$, $\left.|y| \leq Q_{m}\right\}, Q_{m}>M>0$, is strongly bounded set in \mathcal{K}_{M}^{\prime}. Let Φ be an arbitrary bounded set in \mathcal{K}_{M} and let $\phi \in \Phi$. Since $\left(e^{-2 \pi\langle y, t\rangle} V_{t}\right) \in \mathcal{K}_{M}^{\prime}$ for any $y \in \mathbb{R}^{n}$, we have from Lemma 8 and general Leibnitz rule that for some n-tuple
α of nonnegative integers, some integer $k \geq 0$, and some continuous function f on \mathbb{R}^{n} bounded by $M>0$,

$$
\begin{align*}
& \left\langle e^{-2 \pi\langle y, t\rangle} V_{t}, \phi(t)\right\rangle \tag{50}\\
= & \left\langle D_{t}^{\alpha}(\exp [M(k t) f(t)]), e^{-2 \pi\langle y, t\rangle} \phi(t)\right\rangle \\
= & (-1)^{|\alpha|} \int_{\mathbb{R}^{n}} e^{M(k t)} f(t) \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!}\left(\frac{1}{i}\right)^{|\beta|} y^{\beta} e^{-2 \pi\langle y, t\rangle} D_{t}^{\gamma}(\phi(t)) d t \\
= & (-1)^{|\alpha|} \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!}\left(\frac{1}{i}\right)^{|\beta|} y^{\beta} I_{y}(\gamma),
\end{align*}
$$

where

$$
\begin{equation*}
I_{y}(\gamma)=\int_{\mathbb{R}^{n}} e^{M(k t)} f(t) e^{-2 \pi\langle y, t\rangle} D_{t}^{\gamma}(\phi(t)) d t \tag{51}
\end{equation*}
$$

Let $Q_{m}>0$ be an arbitrary but fixed real number. For $y \in \mathbb{R}^{n}$ with $|y| \leq Q_{m}$, if we choose $r \geq \max \left\{|\alpha|, 2 k+2 \pi Q_{m}\right\}$, we have from Lemma 5 and the fact that $\phi \in \mathcal{K}_{M}$ that

$$
\begin{align*}
\left|I_{y}(\gamma)\right| & \leq M \int_{\mathbb{R}^{n}} e^{M(k t)} e^{2 \pi|y||t|}\left|D_{t}^{\gamma}(\phi(t))\right| d t \tag{52}\\
& \leq M \int_{\mathbb{R}^{n}} e^{M(k t)} e^{2 \pi Q_{m}|t|}\left|D_{t}^{\gamma}(\phi(t))\right| d t \\
& \leq M \int_{\mathbb{R}^{n}} e^{-M(k t)} e^{M(2 k t)} e^{M\left(2 \pi Q_{m} t\right)}\left|D_{t}^{\gamma}(\phi(t))\right| d t \\
& \leq M \int_{\mathbb{R}^{n}} e^{M\left(\left(2 k+2 \pi Q_{m}\right) t\right)}\left|D_{t}^{\gamma}(\phi(t))\right| e^{-M(k t)} d t \\
& \leq M\|\phi\|_{\mathcal{K}_{M}} \int_{\mathbb{R}^{n}} e^{-M(k t)} d t
\end{align*}
$$

where M is such that $\sup _{t \in \mathbb{R}^{n}}|f(t)| \leq M$. Since Φ is a bounded set in \mathcal{K}_{M}, there exist a constant W_{γ}, depending only γ, such that $\|\phi\|_{\mathcal{K}_{M}} \leq W_{\gamma}$ for all $\phi \in \Phi$. Hence for each γ with $\beta+\gamma=\alpha$,

$$
\begin{equation*}
\left|I_{y}(\gamma)\right| \leq M W_{\gamma} \int_{\mathbb{R}^{n}} e^{-M(k t)} d t=W_{\gamma}^{\prime} \tag{53}
\end{equation*}
$$

for all $\phi \in \Phi$. Thus we have from (50) and (53) that

$$
\begin{equation*}
\left|\left\langle e^{-2 \pi\langle y, t\rangle} V_{t}, \phi(t)\right\rangle\right| \leq W_{\gamma}^{\prime} \sum_{\beta+\gamma=\alpha} \frac{\alpha!}{\beta!\gamma!} Q_{m}^{|\beta|}, \quad \phi \in \Phi . \tag{54}
\end{equation*}
$$

Here the bound in (54) is independent of $\phi \in \Phi$. Hence $\left\{e^{-2 \pi\langle y, t\rangle} V_{t}: y \in\right.$ $\left.\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),|y| \leq Q_{m}\right\}, Q_{m}>M>0$, is a bounded set in complex plane. Since Φ be an arbitrary bounded set in $\mathcal{K}_{M},\left\{e^{-2 \pi\langle y, t\rangle} V_{t}: y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap\right.\right.\right.$
$\left.N(0, m))),|y| \leq Q_{m}\right\}, Q_{m}>M>0$, is strongly bounded set in \mathcal{K}_{M}^{\prime}. Thus we have from Lemma 10 and (23) that

$$
\begin{aligned}
& \left\{f(z): y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),|y| \leq Q_{m}\right\} \\
= & \left\{\mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} V_{t}\right]: y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),|y| \leq Q_{m}\right\}
\end{aligned}
$$

is strongly bounded set in $\mathbf{K}_{\mathbf{M}}^{\prime}$. This completes the proof of (VI).
We consider the converse of Theorem 1 . We note that the inequality (20) in Theorem 1 can be rewrite as

$$
\begin{equation*}
|g(t)| \leq K_{g} e^{k_{g}|t|}, \quad t \in \mathbb{R}^{n} \tag{55}
\end{equation*}
$$

for some two positive constants K_{g} and k_{g} both of which are depend on g. We will use the inequality (55) instead of the inequality (20) in the next theorem.

Theorem 2. Let C be an open connected cone in \mathbb{R}^{n} and let C_{*}^{\prime} be an arbitrary compact subcone of $C_{*}=\mathbb{R}^{n} \backslash C^{*}$. Let $A>0$ be such that $A / \xi \leq 1$, where $\xi=\xi\left(C_{*}^{\prime}\right)$ is a constant, depending on C_{*}^{\prime}, as in Lemma 2. Let V be a finite sum

$$
\begin{equation*}
V=\sum_{\alpha} D_{t}^{\alpha}\left(g_{\alpha}(t)\right) \tag{56}
\end{equation*}
$$

where each g_{α} are continuous function of $t \in \mathbb{R}^{n}$. Assume that for each n-tuple of nonnegative integers $\alpha, g_{\alpha}(t)$ satisfies

$$
\begin{equation*}
\left|g_{\alpha}(t)\right| \leq K_{\alpha} e^{k_{\alpha}|t|}, \quad t \in \mathbb{R}^{n} \tag{57}
\end{equation*}
$$

where some two positive constants K_{α} and k_{α} both of which are depend on g_{α}. Also assume that each g_{α} satisfies

$$
\begin{equation*}
\left|g_{\alpha}(t)\right| \leq M\left(C_{*}^{\prime}, \eta\right) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right], t \in C_{*}^{\prime} \subset C_{*} \tag{58}
\end{equation*}
$$

for any $\eta \in(0,1)$ with $1-3 \eta>0$, where $M\left(C_{*}^{\prime}, \eta\right)$ is a constant depending on C_{*}^{\prime} and on η. Then $V \in \mathcal{K}_{1}^{\prime} \subset \mathcal{K}_{M}^{\prime}$. Furthermore the function

$$
f(z)=\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle
$$

and any derivative of $f(z)$ belong to $G_{M}\left(\frac{\rho_{C}}{1-3 \eta} ; \mathcal{O}(C)\right)$.
Proof. Since $g_{\alpha}(t)$ is continuous and $g_{\alpha}(t) \in \mathcal{K}_{1}^{\prime} \subset \mathcal{K}_{M}^{\prime}, V \in \mathcal{K}_{1}^{\prime} \subset \mathcal{K}_{M}^{\prime}$. Using the differentiation in the distribution sense, we write $f(z)$ as

$$
\begin{equation*}
f(z)=\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle=\sum_{\alpha} z^{\alpha} \int_{\mathbb{R}^{n}} g_{\alpha}(t) e^{2 \pi i\langle z, t\rangle} d t . \tag{59}
\end{equation*}
$$

To show the existence and analyticity of $f(z)$ for a certain z, consider

$$
\begin{equation*}
h_{\alpha}(z)=\int_{\mathbb{R}^{n}} g_{\alpha}(t) e^{2 \pi i\langle z, t\rangle} d t \tag{60}
\end{equation*}
$$

Since $\left(C^{*}\right)^{\prime} \cap C_{*}^{\prime}=\emptyset$ and $\left(C^{*}\right)^{\prime} \cup C_{*}^{\prime}=\mathbb{R}^{n}$, (60) can be rewritten by

$$
\begin{align*}
h_{\alpha}(z) & =\int_{\mathbb{R}^{n}} g_{\alpha}(t) e^{2 \pi i\langle z, t\rangle} d t \tag{61}\\
& =\int_{C_{*}^{\prime}} g_{\alpha}(t) e^{2 \pi i\langle z, t\rangle} d t+\int_{\left(C^{*}\right)^{\prime}} g_{\alpha}(t) e^{2 \pi i\langle z, t\rangle} d t \\
& =h_{C_{*}^{\prime}}^{0, \alpha}(z)+h_{\left(C^{*}\right)^{\prime}}^{0, \alpha}(z),
\end{align*}
$$

where $h_{C_{*}^{\prime}}^{0, \alpha}(z)$ and $h_{\left(C^{*}\right)^{\prime}}^{0, \alpha}(z)$ are the functions corresponding to $(\gamma, g)=\left(0, g_{\alpha}\right)$ in Lemma 12 and Lemma 13, respectively.

Also we have from (59), the generalized Leibnitz rule, and the fact that $T\left(C^{\prime} ; m\right) \subset T^{C^{\prime}}$ that

$$
\begin{align*}
D_{z}^{\gamma}(f(z)) & =\sum_{\alpha} \sum_{\beta+\mu=\gamma} \frac{\gamma!}{\beta!\mu!} D_{z}^{\beta}\left(z^{\alpha}\right)\left[D_{z}^{\mu}\left(\left(h_{C_{*}^{*}}^{0, \alpha}\right)(z)\right)+D_{z}^{\mu}\left(\left(h_{\left(C^{*}\right)^{\prime}}^{0, \alpha}\right)(z)\right)\right] \tag{62}\\
& =\sum_{\alpha} \sum_{\beta+\mu=\gamma} \frac{\gamma!}{\beta!\mu!} D_{z}^{\beta}\left(z^{\alpha}\right)(-1)^{|\mu|}\left[h_{C_{*}^{\prime}}^{\gamma, \alpha}(z)+h_{\left(C^{*}\right)^{\prime}}^{\gamma, \alpha}(z)\right], z \in T\left(C^{\prime} ; m\right),
\end{align*}
$$

where γ, β and μ are n-tuples of nonnegative integers. Here $h_{C_{*}^{\prime}}^{\gamma, \alpha}(z)$ and $h_{\left(C^{*}\right)^{\prime}}^{\gamma, \alpha}(z)$ are the functions corresponding to $(\gamma, g)=\left(\gamma, g_{\alpha}\right)$ in Lemma 12 and Lemma 13, respectively.

Let C^{\prime} be an arbitrary compact subcone of $\mathcal{O}(C)$. Choose $m_{\alpha}=m_{\alpha}\left(C^{\prime}\right)$, depending on α and on C^{\prime}, such that

$$
\begin{equation*}
m_{\alpha}=\left(k_{\alpha} /(2 \pi \delta)\right)+1, \tag{63}
\end{equation*}
$$

where k_{α} is as in (57) and δ is as in Lemma 3. For $m_{\alpha}>0$ in (63), let z_{0} be an arbitrary but fixed point in $T\left(C^{\prime} ; m_{\alpha}\right)=\mathbb{R}^{n}+i\left(C^{\prime} \backslash\left(C^{\prime} \cap N\left(0, m_{\alpha}\right)\right)\right)$. If we choose an open neighborhood $N^{\prime}\left(z_{0}, r\right)$ of z_{0} with radius $r>0$ whose closure is contained in $T\left(C^{\prime} ; m_{\alpha}\right) \subset T^{C^{\prime}}, h_{C_{*}^{\prime}}^{\gamma, \alpha}(z)$ and $h_{\left(C^{*}\right)^{\prime}}^{\gamma, \alpha}(z)$ converge absolutely and uniformly for $z \in N^{\prime}\left(z_{0}, r\right)$ from Lemma 12 and Lemma 13, respectively. Since z is an arbitrary point in $T\left(C^{\prime} ; m_{\alpha}\right)$, we have from (62) that $f(z)$ and its derivative is analytic in $T\left(C^{\prime} ; m_{\alpha}\right)$.

We put

$$
\begin{equation*}
m=\max _{\alpha}\left\{m_{\alpha}\right\} \tag{64}
\end{equation*}
$$

where m_{α} is as in (63) for each α. Since $T\left(C^{\prime} ; m\right) \subset T\left(C^{\prime} ; m_{\alpha}\right), h_{\alpha}(z)$ in (61) is analytic in $T\left(C^{\prime} ; m\right)$ for each α, hence $\sum_{\alpha} z^{\alpha} h_{\alpha}(z)$ is also analytic in $T\left(C^{\prime} ; m\right)$. Thus $f(z)=\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle$ and any derivative of $f(z)$ are analytic in $T\left(C^{\prime} ; m\right), C^{\prime} \subset \mathcal{O}(C)$, for the fixed m in (64).

Now we will obtain a growth of $f(z)$ and any derivative of $f(z)$ like the inequality in the definition of $G_{M}(A ; C)$ for any compact subcone $C^{\prime} \subset \mathcal{O}(C)$ and the corresponding $m>0$ taken in (64).

In order to estimate integral representations of $f(z)$ and any derivative of $f(z)$ of the form (59) on C_{*}^{\prime}, we will continue the estimation of inequalities in (14) under the additional condition of A and ξ in this theorem.

Let $A>0$ be such that $A / \xi \leq 1$, where $\xi=\xi\left(C_{*}^{\prime}\right)$ is a constant, depending on C_{*}^{\prime}, as in Lemma 2 and let $z \in N^{\prime}\left(z_{0}, r\right) \subset T^{C^{\prime}}$, where $N^{\prime}\left(z_{0}, r\right)$ is an open neighborhood of z_{0} with radius $r>0$ whose closure is in $T^{C^{\prime}}$.

If we replace T by $|y|$ in (11), (12), and (13), we have from (14) that

$$
\begin{align*}
\left|h_{C_{*}^{\prime}}^{\gamma, \alpha}(z)\right|= & \left|\int_{C_{*}^{\prime}} t^{\gamma} g(t) e^{2 \pi i\langle z, t\rangle} d t\right| \tag{65}\\
\leq & K^{\prime}\left(C_{*}^{\prime}, A, \eta\right) \exp \left[2 \pi|y| \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right. \\
& \left.-2 \pi(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right)\right]
\end{align*}
$$

for n tuples γ and α of nonnegative integers and all $z \in N^{\prime}\left(z_{0}, r\right)$, where $K^{\prime}\left(C_{*}^{\prime}, A, \eta\right)$ is a constant depending on fixed C_{*}^{\prime}, on fixed $A>0$, and on fixed $\eta \in(0,1)$ with $1-3 \eta>0$. By Lemma 6 ,

$$
\begin{equation*}
\frac{|y| \rho_{C}}{1-3 \eta} \cdot \omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)=M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)+\Omega\left(\omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right) \tag{66}
\end{equation*}
$$

Since $A / \xi \leq 1$ and $0<1-3 \eta<1$, we have from (66) that

$$
\begin{align*}
& |y| \rho_{C} \frac{A}{\xi} \cdot \omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)-(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right) \tag{67}\\
\leq & |y| \rho_{C} \cdot \omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)-(1-3 \eta) \Omega\left(\omega^{-1}\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right) \\
= & (1-3 \eta) M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right) \leq M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right) .
\end{align*}
$$

Applying (67) to (65), since z is an arbitrary point in $T^{C^{\prime}}$, we have that for n tuples γ and α of nonnegative integers

$$
\begin{equation*}
\left|h_{C_{*}^{\prime}}^{\gamma, \alpha}(z)\right| \leq K^{\prime}\left(C_{*}^{\prime}, A, \eta\right) \exp \left[M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right], \quad z \in T^{C^{\prime}} \tag{68}
\end{equation*}
$$

where $K^{\prime}\left(C_{*}^{\prime}, A, \eta\right)$ is a constant depending on fixed C_{*}^{\prime}, on fixed $A>0$ with $A / \xi \leq 1$, and on fixed $\eta \in(0,1)$ with $1-3 \eta>0$.

We now consider the integral representations of $f(z)$ and any derivative of $f(z)$ in (59) on $\left(C^{*}\right)^{\prime}$. Let m_{α} and m be as in (63) and (64), respectively. Since $m \geq m_{\alpha}$ for each $m_{\alpha}, k_{\alpha}-2 \pi \delta|y|<-2 \pi \delta<0$ when $|y|>m$ and $y \in C^{\prime}$. Then we have from Lemma 13 that for n tuples γ and α of nonnegative integers,

$$
\begin{equation*}
\left|h_{\left(C^{*}\right)^{\prime}}^{\gamma, \alpha}(z)\right|=\left|\int_{\left(C^{*}\right)^{\prime}}\right| t^{\gamma}\left|g(t) e^{2 \pi i\langle z, t\rangle} d t\right| \tag{69}
\end{equation*}
$$

$$
\begin{aligned}
& \leq K_{\alpha} Z_{n}(|\gamma|+n-1)!(2 \pi \delta)^{-|\gamma|-n} \\
& =Q_{\alpha}\left(m, C^{\prime}\right)<\infty, \quad z \in T\left(C^{\prime} ; m\right)
\end{aligned}
$$

where $Q_{\alpha}\left(m, C^{\prime}\right)$ is a constant depending on m chosen in (64) and on $C^{\prime} \subset$ $\mathcal{O}(C)$ since $\delta=\delta\left(C^{\prime}\right)$ depends on C^{\prime}.

Applying (68) and (69) to (62), we can find a nonnegative real number N which does not depend on m chosen in (64) or on C^{\prime} such that for n tuples γ and α of nonnegative integers and $z \in T\left(C^{\prime} ; m\right)$,

$$
\begin{align*}
\left|D_{z}^{\gamma}(f(z))\right| \leq & \sum_{\alpha} C_{\alpha}(1+|z|)^{N} \tag{70}\\
& \cdot\left[K^{\prime}\left(C_{*}^{\prime}, A, \eta\right) \exp \left[M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right]+Q_{\alpha}\left(m, C^{\prime}\right)\right] \\
\leq & K_{1}\left(m, C^{\prime}, A, \eta\right)(1+|z|)^{N} \exp \left[M\left(\frac{|y| \rho_{C}}{1-3 \eta}\right)\right]
\end{align*}
$$

where $K_{1}\left(m, C^{\prime}, A, \eta\right)$ is a constant depending on m chosen in (64), on C^{\prime}, on fixed $A>0$ with $A / \xi \leq 1$, and on fixed $\eta \in(0,1)$ with $1-3 \eta>0$. Here we note that $C_{*}^{\prime}=\mathbb{R}^{n} \backslash\left(C^{*}\right)^{\prime}$ depends on $C^{\prime} \subset \mathcal{O}(C)$. This complete the proof of Theorem 2.

We can extend the results that are described from last paragraph of [3, p. 1060] to Corollary 7.1 of [3, p. 1061] to the results in the context of spaces \mathcal{K}_{M}^{\prime} or spaces $G_{M}(A ; C)$ by the exactly same line there as follow;
(i) Under the hypothesis of Theorem 2, (V) and (VI) are hold for $z \in$ $T\left(C^{\prime} ; m\right), C^{\prime} \subset \mathcal{O}, m=m\left(C^{\prime}\right)>0$.
(ii) Let C be an open connected cone and let C_{*}^{\prime} be an arbitrary compact subcone of $C_{*}=\mathbb{R}^{n} \backslash C^{*}$. Let $A>0$ be such that $A / \xi \leq 1$, where $\xi=\xi\left(C_{*}^{\prime}\right)$ is a constant, depending on C_{*}^{\prime}, as in Lemma 2. If $f(z) \in G_{M}(A ; C)$, then $f(z)$ and any derivative of $f(z)$ can be extended to an element of $G_{M}\left(\frac{\rho_{C}}{1-3 \eta} ; \mathcal{O}(C)\right)$ for a constant $\eta \in(0,1)$ with $1-3 \eta>0$.

6. The relationship between $F_{M}(A ; C), \mathcal{K}_{M}^{\prime}$, and $\mathrm{K}_{\mathrm{M}}^{\prime}$ and distributional boundary values of the spaces $F_{M}(A ; C)$

In this section, we only state without proof the relationship between $F_{M}(A ; C), \mathcal{K}_{M}^{\prime}$, and $\mathbf{K}_{\mathrm{M}}^{\prime}$ since the ideas, methods, and any others needed to obtain the relationship between $F_{M}(A ; C), \mathcal{K}_{M}^{\prime}$, and $\mathbf{K}_{\mathbf{M}}^{\prime}$ are the same as that of obtaining the relationship between $G_{M}(A ; C), \mathcal{K}_{M}^{\prime}$ and $\mathbf{K}_{\mathrm{M}}^{\prime}$ in the previous section.

Exceptionally, we show that the elements of the spaces $F_{M}(A ; C)$ can obtain distributional boundary values in $\mathbf{K}_{\mathbf{M}}^{\prime}$.
Theorem 3. Let $M(x)$ and $\Omega(y)$ be the functions as in Definition 7. For the open connected cone C, let $f(z) \in F_{M}(A ; C)$. For any compact subcone $C^{\prime} \subset C$, let $m=m\left(C^{\prime}\right)$ be a fixed real number which depends on C^{\prime} as in the
definition of $F_{M}(A ; C)$. Then there exist a unique element $V=D_{t}^{\alpha}(g(t)) \in$ \mathcal{K}_{M}^{\prime}, where α is an n-tuple of nonnegative integers and $g(t)$ is a continuous function of $t \in \mathbb{R}^{n}$ such that the following are hold.
(I) For $A \geq 0$

$$
f(z)=z^{\alpha} \mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} g(t) ; x\right], \quad z=x+i y \in T^{C^{\prime}}
$$

where the Fourier transform is taken in the L^{2} sense.
(II) For $A \geq 0, g(t)$ satisfies

$$
\begin{equation*}
|g(t)| \leq K\left(C^{\prime}, m\right) \exp [2 \pi(M(A y)+|y||t|)], \quad t \in \mathbb{R}^{n} \tag{71}
\end{equation*}
$$

where $C^{\prime} \subset C$ is arbitrary and $K\left(C^{\prime}, m\right)$ depends on C^{\prime} and on m. Inequality (71) is independent of $y \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right)$ and $\operatorname{supp}(g)=\operatorname{supp}(V) \subseteq\{t$: $\left.u_{C}(t) \leq A\right\}$.
(III) For $A>0$ and any compact subcone of $C_{*}^{\prime} \subset C_{*}=\mathbb{R}^{n} \backslash C^{*}, g(t)$ satisfies

$$
|g(t)| \leq M\left(C_{*}^{\prime}, \eta\right) \exp \left[-2 \pi(1-2 \eta) \Omega\left(\frac{u_{C}(t)}{A}\right)\right], t \in C_{*}^{\prime}
$$

for any $\eta \in(0,1)$ with $1-2 \eta>0$, where $M\left(C_{*}^{\prime}, \eta\right)$ is a constant depending on C_{*}^{\prime} and on η.
(IV) For $A \geq 0$, if $g(t)$ satisfies that $|g(t)| \leq K e^{k|t|}, t \in\left(C^{*}\right)^{\prime}$, for some constant K and $k>0$, then

$$
f(z)=\left\langle V, e^{2 \pi i\langle z, t\rangle}\right\rangle, \quad z=x+i y \in T^{C^{\prime}}
$$

(V) For $A \geq 0$,

$$
\begin{equation*}
f(z)=\mathcal{F}\left[e^{-2 \pi\langle y, t\rangle} V_{t}\right], \quad z=x+i y \in T^{C^{\prime}} \tag{72}
\end{equation*}
$$

where the equality in (72) holds in $\mathbf{K}_{\mathbf{M}}^{\prime}$.
(VI)

$$
\left\{f(z): y=\operatorname{Im}(z) \in\left(C^{\prime} \backslash\left(C^{\prime} \cap N(0, m)\right)\right),|y| \leq Q_{m}\right\}
$$

is strongly bounded in $\mathbf{K}_{\mathbf{M}}^{\prime}$, where $Q_{m}>m>0$.
(VII) $f(z) \rightarrow \mathcal{F}[V] \in \mathbf{K}_{\mathbf{M}}^{\prime}$ in the strong and weak topology of $\mathbf{K}_{\mathbf{M}}^{\prime}$ as $y=$ $\operatorname{Im}(z) \rightarrow 0, y \in C^{\prime} \subset C$, where this boundary value is obtained independently of how $y \rightarrow 0$ in $C^{\prime} \subset C$.
Proof. It suffices to prove only (VII). Since $V \in \mathcal{K}_{M}^{\prime}$, if we replace \mathcal{K}_{p}^{\prime} and $e^{k|t|^{p}}$ in the proof of Lemma 5.9 in [3, pp. 1052-1053] by \mathcal{K}_{M}^{\prime} and $e^{M(k t)}$, respectively, we have that

$$
\begin{equation*}
\lim _{y \rightarrow 0} e^{-2 \pi\langle y, t\rangle} V_{t}=V_{t}, \quad y \in \mathbb{R}^{n} \tag{73}
\end{equation*}
$$

in the weak topology of \mathcal{K}_{M}^{\prime}. Since \mathcal{K}_{M} is a Montel space by Lemma 7 , we also have the convergence (73) in the strong topology of \mathcal{K}_{M}^{\prime}. Since the Fourier transform is a topological isomorphism of \mathcal{K}_{M}^{\prime} onto $\mathbf{K}_{\mathbf{M}}^{\prime}$ by Lemma $10, f(z) \rightarrow$ $\mathcal{F}[V] \in \mathbf{K}_{\mathbf{M}}^{\prime}$ in the strong and weak topology of $\mathbf{K}_{\mathbf{M}}^{\prime}$ as $y=\operatorname{Im}(z) \rightarrow 0, y \in$ $C^{\prime} \subset C$. Since V is independent of how $y \rightarrow 0$ in $C^{\prime} \subset C$, the boundary value
$\mathcal{F}[V]$ is obtained independently of how $y \rightarrow 0$ in $C^{\prime} \subset C$. This completes the proof of (VII).

Acknowledgement. The author would like to thank the referees for their careful reading and valuable comments given to improve the paper.

References

[1] R. D. Carmichael, Distributional boundary values of functions analytic in tubular radial domains, Indiana Univ. Math. J. 20 (1971), 843-853.
[2] , Distributions of exponential growth and their Fourier transforms, Duke Math. J. 40 (1973), 765-783.
[3] , Analytic functions related to the distributions of exponential growth, SIAM J. Math. Anal. 10 (1979), no. 5, 1041-1068.
[4] I. M. Gel'fand and G. E. Shilov, Generalized Functions, vol. 3, Academic Press, New York, 1968.
[5] D. H. Pahk Structure theorem and Fourier transform for distributions with restricted growth, Kyungpook Math. J. 23 (1983), no. 2, 129-146.
[6] G. Sampson and Z. Zielezny, Hypoellitic convolution equations in $\mathcal{K}_{p}^{\prime}, p>1$, Trans. Amer. Math. Soc. 223 (1976), 133-154.
[7] L. Schwarz, Mathematics for the Physical Sciences, Addison-Wesley, Reading, MA, 1966.
[8] J. Sevastião and E. Silva, Le calcul opérationnel au point de vue desdistributions, Portugal. Math. 14 (1955), 105-132.
[9] V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M. I. T. Press, Cambridge, MA, 1966.

Department of Mathematics
Inje University
Kimhae 621-749, Korea
E-mail address: mathsohn@inje.ac.kr

