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CERTAIN CLASSES OF ANALYTIC FUNCTIONS AND

DISTRIBUTIONS WITH GENERAL EXPONENTIAL

GROWTH

Byung Keun Sohn

Abstract. Let K
′
M

be the generalized tempered distributions of eM(t)-
growth, where the function M(t) grows faster than any linear functions
as |t| → ∞, and let K

′
M

be the Fourier transform spaces of K
′
M

. We
obtain the relationship between certain classes of analytic functions in
tubes, K′

M
and K

′
M

.

1. Introduction

In his book [9], V. S. Vladimirov has considered the relationship between the

class of analytic functions in tubes H(A;C) and tempered distributions with

polynomial growth S ′. Later R. D. Carmichael [3] has introduced two different

types of classes of analytic functions in tubes Gp(A;C) and Fp(A;C) both of

which are extensions of H(A;C) and has obtained the relationship between

Gp(A;C) (and Fp(A;C)) and tempered distributions with exponential growth

of polynomial powers K′
p, p > 1, and the Fourier transform spaces K′

p
, p > 1

of K′
p, p > 1.

In this paper, we introduce two different types of classes of analytic func-

tions in tubes GM (A;C) and FM (A;C) which are extensions of Gp(A;C) and

Fp(A;C), respectively, and obtain the relationship between GM (A;C) (and

FM (A;C)) and tempered distributions with general exponential powers growth

K′
M and the Fourier transform K′

M
of K′

M .

In the main sections, we show that elements of GM (A;C) and FM (A;C) can

be represented as the Fourier-Laplace transform of distributions K′
M . Also we

present representations of GM (A;C) and FM (A;C) as elements in K′
M

in terms

of Fourier transforms in K′
M

of certain elements in K′
M and strong boundedness

for GM (A;C) and FM (A;C) as elements in K′
M
. In particular, we show that

elements of FM (A;C) obtain distributional boundary values in K′
M
.
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2. Notation and preliminaries

We denote the points of Rn spaces by t = (t1, t2, . . . , tn) and s = (s1, s2, . . .,

yn). The letter n always denotes the dimension. In Cn the points are denoted

by z = x + iy, x, y ∈ Rn. We define 〈t, s〉 = t1s1 + t2s2 + · · · + tnsn and

similarly define 〈t, z〉, t ∈ Rn, z ∈ Cn. α denotes n tuples (α1, α2, . . . , αn)

of nonnegative integers. |α| = α1 + α2 + · · · + αn and α! = α1!α2! · · ·αn!.

If k = (k1, k2, . . . , kn) is an n tuples of integers, tk = t
k1

1 t
k2

2 · · · tkn
n , t ∈ Rn,

with similar definition for zk, z ∈ Cn. If a ∈ R, then at = (at1, at2, . . . , atn).

We write Dj = − 1
2πi

(

∂
∂tj

)

, j = 1, 2, . . . , n, and Dα
t = Dα1

1 Dα2

2 · · ·Dαn
n and

similarly write Dα
z .

Definition 1. A set C ⊂ Rn is a cone with vertex at zero if y ∈ C implies

λy ∈ C for all positive real scalar λ.

Definition 2. Let C be a cone. C ∩ {y ∈ Rn : |y| = 1} is called the projection

of C and is denoted pr(C).

Definition 3. If C′ and C are cones such that pr(C̄′) ⊂ pr(C), then C′ is

called a compact subcone of C.

For a cone C, O(c) will denote the convex hull or envelop of C and TC =

Rn + iC ⊆ Cn is a tube in Cn.

Definition 4. If C is open, TC is called a tubular cone. If C is both open and

connected, TC is called a tubular radial domain.

Definition 5. The set C∗ = {t ∈ Rn : 〈t, y〉 ≥ 0, y ∈ C} is the dual cone of

the cone C and C∗ = Rn \ C∗.

Definition 6. The function

uC = sup
y∈pr(C)

(−〈t, y〉)

is the indicatrix of the cone C.

It follows that C∗ = {t ∈ Rn : uC(t) ≤ 0}. Further uC(t) ≤ uO(C)(t) and

if t ∈ C∗, then uC(t) = uO(C)(t) [9, p. 219]. To characterize the nonconvexity

of the cone, we have the following; for a cone C, let

ρC = sup
t∈C∗

uO(C)

uC(t)
.

A cone C is convex if and only if ρC = 1 [9, Sec. 25.1, Lemma 2] and if a

cone is open and consists of finite number of components, then ρC < 1 [9, Sec.

25.1, Lemma 3]. In this paper we shall be considering the case 1 ≤ ρC < +∞
for all cones C.

Now we present four important facts what will be used frequently later.

Lemma 1 ([9, Sec. 25.1]). Let C be a cone. Then

−〈t, y〉 ≤ |y|uO(C), uO(C) ≤ ρCuC(t), t ∈ C∗, y ∈ O(C).
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Lemma 2 ([9, Eq.(28), p. 241]). Let C be an open connected cone and let C′
∗

be a compact subcone of C∗. Then there exist ξ = ξ(C′
∗), depending on C′

∗,

such that

ξ|t| ≤ uC(t) ≤ |t|, t ∈ C′
∗.

Lemma 3 ([9, Sec. 25.2, Lemma 2]). Let C be an open cone and C′ that is

an arbitrary subcone of O(C). Then there exist a number δ = δ(C′) and open

cone (C∗)′ both depending on C′ such that C∗ ⊂ (C∗)′ and

〈y, t〉 ≥ δ|y||t|, y ∈ C′ ⊂ O(C), t ∈ (C∗)′.

Lemma 4 ([9, Lemma, p. 241]). Let C′
∗ be cone that is compact in the cone

C∗. For an arbitrary number η ∈ (0, 1), there exists a compact subcone C′ =

C′(C′
∗, η) depending on C′

∗ and on η such that for any t ∈ C′
∗, there exists a

point y0t ∈ Pr(C′) at which

−〈t, y0t 〉 ≥ (1− η)uC(t).

3. The distribution spaces K
′

M
and K′

M

Let µ(ξ), 0 ≤ ξ ≤ ∞, denote a continuous increasing function such that

µ(0) = 0, µ(∞) = ∞. For t ≥ 0 we define

M(t) =

∫ t

0

µ(ξ)dξ.

The function M(t) is an increasing, convex, and continuous function with

M(0) = 0 and M(∞) = ∞. Further we define M(t) for negative t by M(−t) =

M(t). Since the derivative µ(t) of M(t) is unbounded in R, the function M(t)

will grow faster than any linear function as |t| → ∞.

The function M(t) can be defined on R
n by M(t1+ t2+ · · ·+ tn) = M(t1)+

M(t2) + · · · + M(tn) for all t = (t1, t2, . . . , tn) ∈ Rn. (Refer to Sec. 4.1 of

Chapter 1 in [4] or p. 130 in [5].)

Definition 7. Let M(x) and Ω(y) be the functions corresponding to µ(ξ) and

ω(η) as above, respectively. Then M(x) and Ω(y) are called to be dual in the

sense of Young if µ(ω(η)) = η and ω(µ(ξ)) = ξ.

We have two examples of dual functions in the sense of Young as follow;

1. M(s) =
sp

p
, Ω(t) =

tq

q
,

1

p
+

1

q
= 1, s, t ≥ 0.

2. M(s) = es − s− 1, Ω(t) = (t+ 1) log(t+ 1)− t, s, t ≥ 0.

We list some properties of function M(x), x ∈ Rn.

Lemma 5. For t ≥ 0 we define M(t) =
∫ t

0
µ(ξ)dξ, where µ(ξ) (0 ≤ ξ ≤ ∞) is

a continuous increasing function such that µ(0) = 0 and µ(∞) = ∞. Then we

have that

M(s) +M(t) ≤ M(s+ t) for all st ≥ 0.



1808 BYUNG KEUN SOHN

M

(

t

k

)

≤ M(t)

k
for all k > 1.

Hence if we let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in Rn, then

M(x) +M(y) ≤ M(x+ y) for all xiyi ≥ 0, (i = 1, 2, . . . , n).

M
(x

k

)

≤ M(x)

k
for all k > 1 and x ∈ R

n.

We note an important property of dual functions which will be useful later.

Lemma 6 ([5, Lemma 1.1]). Let M(s) and Ω(t) be defined as in Definition 7,

where s, t ∈ R. Then

st ≤ M(s) + Ω(t) for any s, t ≥ 0

and the equality holds if and only if t = µ(s) or s = ω(t).

Hence if we let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in Rn, then

〈x, y〉 ≤ M(x) + Ω(y) for any xi, yi ≥ 0, (i = 1, 2, . . . , n)

and the equality holds if and only if yi = µ(xi) or xi = ω(yi).

For more details about the function M(x) and Ω(y), we can refer to [4,

Chapter 1].

Using the function M(t), we define the space KM as the space of all functions

ϕ(t) in C∞ such that

νk(ϕ) = sup
t∈Rn, |α|≤k

eM(kt)|Dα
t ϕ(t)| < ∞, k = 1, 2, . . . ,

where Dα
t = D

α1

1 D
α2

2 · · ·Dαn
n and D

αj

j = − 1
2πi

∂
αj

(∂tj)
αj and |α| = α1 + α2 +

· · ·+αn. The topology in KM is defined by the countably family of semi-norms

{νk}∞k=1. It follows that the space KM becomes a Fréchet space [5] and the

identity mapping D →֒ KM →֒ E are continuous when E denotes the space of

all C∞ functions on Rn and D the space of all C∞ functions with compact

support in Rn.

Lemma 7. KM is a Montel space.

Proof. If B is a bounded set of KM , then B is a bounded set in C∞ since the

imbedding KM →֒ C∞ is continuous. Since C∞ is a Montel space, it suffices

to show that B is a relatively compact set in C∞. Let (φj) be a sequence of

elements of B such that (φj) converges to φ in C∞. Since B is a bounded set

of KM , for all k ∈ N and all α ∈ Nn, there exists a constant Ck,α such that

sup
t∈Rn

|eM(kt)Dαφj(t)| ≤ Ck,α, φj ∈ B.(1)

The inequality (1) implies that, given ǫ > 0 there is a constant M > 0 such

that for t with |t| > M ,

|eM(kt)Dαφj(t)| ≤ ǫ, φj ∈ B.(2)
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Since φj → φ in C∞, (2) implies that

|eM(kt)Dαφ(t)| ≤ ǫ, |t| > M.

Hence φ ∈ KM . On the other hand, since φj → φ in C∞, (Dαφj) converges

uniformly to Dαφ on the compact set {t ∈ Rn : |t| ≤ M}. This implies that

given ǫ > 0, we can find an integer j0 such that

eM(kt)|Dαφj(t)−Dαφ(t)| ≤ ǫ

for all t with |t| ≤ M and all j ≥ j0. Last three inequalities imply that

sup
t∈Rn

eM(kt)|Dαφj(t)−Dαφ(t)| ≤ ǫ

for all j ≥ j0; therefore φj → φ in KM . The proof is completed. �

We denote by K′
M the space of all continuous linear functional on KM .

Clearly when M(t) = log(1 + |t|), K′
M is the space of Schwartz’s tempered

distributions. When M(t) = |t|, K′
M is the space of tempered distributions of

K′
1 which is introduced and characterized by J. Sevastião E. Silva [8]. When

M(t) = |t|p, p > 1, K′
M is the space of tempered distributions of K′

p, p > 1,

which is introduced and characterized by Sampson and Zielezny [6].

The restriction T̃ = T |D of a functional T ∈ K′
M to D is a distribution.

Since D is dense in KM , T is determined by its values on D. We characterize

the distributions in K′
M by their growth at infinity.

Lemma 8 ([5, Theorem 2.3]). A distribution T ∈ D is in K′
M if and only if

there exist positive integers k, α and a bounded continuous function f(t) on Rn

such that

T = Dα
[

eM(kt)f(t)
]

.

Let φ(t) ∈ L1(Rn). We define the Fourier transform of φ(t) by

φ̂(x) = F [φ(t);x] =

∫

Rn

φ(t)e2πi〈x,t〉dt

and the inverse Fourier transform of φ(t) by

F−1[φ(t);x] =

∫

Rn

φ(t)e−2πi〈x,t〉dt.

Now we have a Paley-Wiener type theorem for the space KM from [5, Theo-

rem 4.1]; an entire function F (ζ) is a Fourier transform of a function ϕ in KM

if and only if, for every integer N ≥ 0 and every ǫ > 0, there exists a constant

C such that

|F (ξ + iη)| ≤ C(1 + |ζ|)−NeΩ(ǫη), ζ = ξ + iη ∈ C
n.

Let KM be the space of Fourier transform of functions in KM . We define in

KM a locally convex topology by means of the seminorms

ωk(ϕ̂) = sup
ζ=ξ+iη

(1 + |ζ|)ke−Ω( η
k )|ϕ̂(ζ), k = 1, 2, . . . , ϕ ∈ KM .
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Lemma 9 ([5, Coro. 4.2]). The Fourier transform is a topological isomorphism

of KM onto KM.

Let K′
M

be the space of continuous linear functional on KM which equipped

with the topology of uniform convergence on all bounded set in KM. Each

distribution T in K′
M has a Fourier transform T̂ in K′

M
defined by Parseval’s

formula

〈T̂ , ϕ̂〉 = (2π)n〈T, ϕ〉, ϕ ∈ KM .

Moreover, we have:

Lemma 10 ([5, Coro. 4.3]). The Fourier transform is a topological isomor-

phism of K′
M onto K′

M
.

For further detailed structure theories about K′
M and K′

M
, we can refer to

[4] and [5].

4. The analytic spaces GM(A;C) and FM(A;C)

To find the relations between the increase in certain classes of analytic func-

tions and the properties of their spectral functions, Vladimirov [9, Sec. 26.4]

introduced the following class of analytic functions;

Let C be an open cone in Rn and C′ be an arbitrary compact subcone of

C. p ≥ 1 and A ≥ 0 are real numbers. A function f(z) belongs to the class

Hp(A;C) if f(z) is analytic in the tubular cone TC = Rn + iC ⊂ Cn and

satisfies

|f(z)| ≤ K(C′)(1 + |z|)N (1 + |y|)−MeA|y|p , z = x+ iy ∈ TC ,

where K(C′) is a constant depending on C′, and N and M are nonnegative

real numbers which do not depend on C′.

Motivated by the works of Vladimirov, R. D. Carmichael introduced two

different types of classes of analytic functions in tubes both of which are more

general spaces than the class Hp(A;C) as follow;

Let C be an open cone in Rn and C′ be an arbitrary compact subcone of

C. p ≥ 1 and A ≥ 0 are real numbers. Let m > 0. T (C′;m) denotes the

set T (C′;m) = Rn + i(C′\(C′ ∩ N(0,m))) where N(0,m) is a closed ball in

R
n of radius m > 0 with center at the origin. A functionf(z) belongs to

the class Gp(A;C) if, for each compact subcone C′ ⊂ C, there exists a fixed

m = m(C′) > 0 depending on C′ such that f(z) is analytic in T (C′;m) and

satisfies

|f(z)| ≤ K(C′;m)(1 + |z|)Ne2πA|y|p, z = x+ iy ∈ T (C′;m),

whereK(C′;m) is a constant depending on C′ and onm andN is a nonnegative

real number which does not depend on C′ and on m.

A function f(z) belongs to Fp(A;C) if, for each compact subcone C′ ⊂ C,

f(z) is analytic in TC′

= Rn + iC′ and satisfies

|f(z)| ≤ K(C′;m)(1 + |z|)Ne2πA|y|p, z = x+ iy ∈ T (C′;m),
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whereK(C′;m) is a constant depending on C′ and onm andN is a nonnegative

real number which does not depend on C′ and on m.

Carmichael studied the relationship between Gp(A;C) (and Fp(A;C)), the

distributions K′
p, p ≥ 1, and the Fourier transform K′

p, p ≥ 1, of K′
p, p ≥ 1, in

[3]. Since K′
p ⊂ K′

M , p ≥ 1, we need more general classes of analytic functions

than Gp(A : C) or Fp(A;C) to find the relationship between the classes of

analytic functions, K′
M , and K′

M
as follow;

For t ≥ 0, let M(t) =
∫ t

0 µ(ξ)dξ, where µ(ξ) (0 ≤ ξ ≤ ∞) is a continuous

increasing function such that µ(0) = 0 and µ(∞) = ∞. Let C be an open cone

in Rn and C′ be an arbitrary compact subcone of C. A ≥ 0 are real numbers.

Let m > 0. T (C′;m) denote the set T (C′;m) = Rn + i(C′\(C′ ∩ N(0,m)))

where N(0,m) is a closed ball in R
n of radius m > 0 with center at the origin.

A functionf(z) belongs to the class GM(A;C) if, for each compact subcone

C′ ⊂ C, there exists a fixed m = m(C′) > 0 depending on C′ such that f(z) is

analytic in T (C′;m) and satisfies

|f(z)| ≤ K(C′;m)(1 + |z|)Ne2πM(Ay), z = x+ iy ∈ T (C′;m),

whereK(C′;m) is a constant depending on C′ and onm andN is a nonnegative

real number which does not depend on C′ and on m.

A function f(z) belongs to FM(A;C) if, for each compact subcone C′ ⊂ C,

f(z) is analytic in TC′

= Rn + iC′ and satisfies

|f(z)| ≤ K(C′;m)(1 + |z|)Ne2πM(Ay), z = x+ iy ∈ T (C′;m),

whereK(C′;m) is a constant depending on C′ and onm andN is a nonnegative

real number which does not depend on C′ and on m.

The 2π in the exponential term in the definition of GM (A;C) and FM (A;C)

simply reflects the way we have defined the Fourier transform in this paper.

Obviously we have the following inclusion relation;

FM (A;C) ⊂ GM (A;C), Gp(A;C) ⊂ GM (A;C), Fp(A;C) ⊂ FM (A;C).

We need three lemmas which will be useful to obtain main results in the

next two sections.

Lemma 11. For t ≥ 0, let Ω(t) =
∫ t

0
ω(ξ)dξ, where ω(ξ) (0 ≤ ξ ≤ ∞) is

a continuous increasing function such that ω(0) = 0 and ω(∞) = ∞. Let

C be an open connected cone and let C′
∗ be an arbitrary compact subcone of

C∗ = Rn\C∗. Let γ be an n-tuple of nonnegative integers. Let n ≥ 1 be an

integer and let R > 0. Then we have

(1 + |t|)n+1+|γ| ≤ M1 exp[2πRΩ(uC(t))],(3)

where M1 = M1(C
′
∗) depends on C′

∗ ⊂ C∗.

Hence for A > 0

(1 + |t|)n+1+|γ| ≤ M2 exp

[

2πRΩ

(

uC(t)

A

)]

,(4)
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where M2 = M2(C
′
∗, A) depends on C′

∗ ⊂ C∗ and on A.

Proof. From Lemma 2, given C′
∗ ⊂ C∗ there exists ξ = ξ(C′

∗), depending on

C′
∗, such that

ξ|t| ≤ uC(t) ≤ |t|, t ∈ C′
∗.(5)

Hence, for any R > 0,

0 < exp[2πRΩ(ξt)] ≤ exp[2πRΩ(uC(t))], t ∈ C′
∗.

Since the function Ω(t) in the hypothesis grows faster than any linear func-

tion as |t| → ∞ for t ∈ Rn,

(1 + |t|)−n−1−|γ| exp[2πRΩ(ξt)] → ∞ as |t| → ∞
for t ∈ Rn, hence

(1 + |t|)−n−1−|γ| exp[2πRΩ(uC(t))] → ∞ as |t| → ∞(6)

for t ∈ C′
∗ ⊂ C∗. Let N(0,m) be a closed ball of the origin in Rn of radius

m > 0. We can find Om > 1, depending on m, such that

Qm(1 + |t|)−n−1−|γ| exp[2πRΩ(ξt)] ≥ 1, t ∈ N(0,m).(7)

By Lemma 2 and (7),

(8) Qm(1 + |t|)−n−1−|γ| exp[2πRΩ(uC(t))] ≥ 1, t ∈ N(0,m) ∩C′
∗.

Thus we have (3) from (6) and (8). Now if A > 0, we have from (5) that

given C′
∗ ⊂ C∗, there exists ξ = ξ(C′

∗), depending on C′
∗, such that

ξ|t|
A

≤ uC(t)

A
≤ |t|

A
, t ∈ C′

∗.(9)

If we replace (5) by (9), we have from the same process as above that

(

1 +

∣

∣

∣

∣

t

A

∣

∣

∣

∣

)n+1+|γ|

≤ M1 exp

[

2πRΩ

(

uC(t)

A

)]

.(10)

But since (1+ |t|) ≤ C1(1+ |t|/A) when C1 = C1(A), depending on A, equals

A if A ≥ 1 and equals 1 if 0 < A < 1, we have (4) from (10). �

Lemma 12. For t ≥ 0, let Ω(t) =
∫ t

0 ω(ξ)dξ, where ω(ξ) (0 ≤ ξ ≤ ∞) is a

continuous increasing function such that ω(0) = 0 and ω(∞) = ∞. Let C be an

open connected cone and let C′ be an arbitrary open compact subcone of O(C).

Let C′
∗ be an arbitrary compact subcone of C∗ = Rn\C∗. Let A > 0. Let g(t)

be a continuous function of t ∈ R
n which satisfies

|g(t)| ≤ K(C′
∗, η) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

, t ∈ C′
∗ ⊂ C∗,

for any η ∈ (0, 1) with 1− 3η > 0, where K(C′
∗, η) is a constant, depending on

C′
∗ and on η. Let z0 ∈ TC′

= Rn + iC′ be an arbitrary but fixed point and let
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z ∈ N ′(z0, r) ⊂ TC′

, where N ′(z0, r) is an open neighborhood of z0 with radius

r > 0 whose closure is in TC′

. Then for any n-tuple γ of nonnegative integer,

h
γ,g
C′

∗

(z) =

∫

C′

∗

tγg(t)e2πi〈z,t〉dt

converges absolutely and uniformly for z ∈ N ′(z0, r).

Proof. From Lemma 1 and assumption about the estimation of g(t), for z =

x + iy ∈ N ′(z0, r), there exists a real number T with |y| = |Im(z)| ≤ T such

that for A > 0 and any η > 0 with 1− 2η > 0

|hγ,g
C′

∗

(t)| ≤ K(C′
∗, η)

∫

C′

∗

|tγ |e−2π〈y,t〉(11)

· exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

dt

≤ K(C′
∗, η)

∫

C′

∗

(1 + |t|)n+1+|γ|

(1 + |t|)n+1
exp[2πTρCuC(t)]

· exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

dt,

where n is the dimension.

By Lemma 2 and Lemma 11 with R = η, for t ∈ C′
∗ ⊂ C∗, there exists a

ξ = ξ(C′
∗) such that

exp

[

2πTρCuC(t)− 2π(1− 2η)Ω

(

uC(t)

A

)]

· (1 + |t|)n+1+|γ|(12)

≤ M(C′
∗, A) exp

[

2πTρCuC(t)− 2π(1− 2η)Ω

(

uC(t)

A

)]

· exp

[

2πηΩ

(

uC(t)

A

)]

≤ M(C′
∗, A) exp

[

2πTρC |t| − 2π(1− 3η)Ω

(

ξt

A

)]

.

Now consider the function of x defined by

f(x) = 2πTρCx− 2π(1− 3η)Ω

(

ξx

A

)

, x > 0.

Since Ω(x) =
∫ x

0 ω(t)dt, we have Ω′(x) = ω(x), hence

f ′(x) = 2πTρC − 2π(1− 3η)ω

(

ξx

A

)

.

Since ω(x) is a continuous increasing function, ω(x) has its inverse function

ω−1(x). Hence if we take η ∈ (0, 1), f(x) attains its maximum at

x =
A

ξ
· ω−1

(

TρC

1− 3η

)

> 0.
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Hence, for t ∈ C′
∗ ⊂ C∗, if we take η ∈ (0, 1) with 1− 3η > 0,

exp

[

2πTρC|t| − 2π(1− 3η)Ω

(

ξt

A

)]

(13)

≤ exp

[

2πTρC
A

ξ
· ω−1

(

TρC

1− 3η

)

− 2π(1− 3η)Ω

(

ω−1

(

TρC

1− 3η

))]

.

Thus we have from (11), (12), and (13) that

|hγ,g
C′

∗

(z)| ≤ M(C′
∗, A)K(C′

∗, η) exp

[

2πTρC
A

ξ
· ω−1

(

TρC

1− 3η

)

(14)

− 2π(1− 3η)Ω

(

ω−1

(

TρC

1− 3η

))]

·
∫

C′

∗

1

(1 + |t|)n+1
dt

≤ K ′(C′
∗, A, η) exp

[

2πTρC
A

ξ
· ω−1

(

TρC

1− 3η

)

− 2π(1− 3η)Ω

(

ω−1

(

TρC

1− 3η

))]

for all z ∈ N ′(z0, r), where K ′(C′
∗, A, η) is a constant depending on fixed C′

∗,

on fixed A > 0, and on fixed η ∈ (0, 1) with 1− 3η > 0. Since the last term of

(14) is independent of z ∈ N ′(z0, r), the function h
γ,g
C′

∗

(z) converges absolutely

and uniformly for z ∈ N ′(z0, r). �

Remark. The estimation of inequalities in (14) will be continued under some

additional conditions in Theorem 2 of the next section.

Lemma 13. Let C be an open connected cone and let C′ be an arbitrary open

compact subcone of O(C). Let (C∗)′ be an open cone as in Lemma 3 and let

C′
∗ = Rn\(C∗)′ ⊂ C∗. Let z0 ∈ T (C′;m) = Rn + i(C′\(C′ ∩ N(0,m))) be

arbitrary but fixed and let z ∈ N ′(z0, r) ⊂ T (C′;m), where N ′(z0, r) is an open

neighborhood of z0 with radius r > 0 whose closure is in T (C′;m). Let g(t)

satisfies

|g(t)| ≤ Kek|t|, t ∈ (C∗)′(15)

for some constants K and k ≥ 0. Then for any n-tuple γ of nonnegative

integers,

h
γ,g

(C
∗
)′(z) =

∫

(C
∗
)′
tγg(t)e2πi〈z,t〉dt

converges absolutely and uniformly for z ∈ N ′(z0, r).

Proof. By Lemma 3, there exist a number δ = δ(C′) and an open cone (C∗)′

both depending on C′ such that C∗ ⊂ (C∗)′ and

〈y, t〉 ≥ δ|y||t|, y ∈ C′ ⊂ O(C), t ∈ (C∗)′.(16)

We choose the real number m = m(C′) > 0 depending on C′ such that

m =
k

(2πδ)
+ 1,(17)
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where k ≥ 0 is as in (15). Then if y ∈ C′ with |y| > m, k− 2πδ|y| < −2πδ < 0.

For the chosen m > 0 in (17), let z0 be an arbitrary but fixed point in T (C′;m).

Choose N ′(z0, r) whose closure is in T (C′;m). Then we have from (16) and

(17) that for z ∈ N ′(z0, r),
∣

∣

∣
h
γ,g
C′

∗

(z)
∣

∣

∣
(18)

=

∣

∣

∣

∣

∣

∫

(C∗)′
tγg(t)e2πi〈z,t〉dt

∣

∣

∣

∣

∣

≤ K

∫

(C∗)′
|tγ |ek|t|e−2π〈y,t〉dt

≤ K

∫

(C∗)′
|tγ | exp[(k − 2πδ|y|)|t|]dt ≤ K

∫

(C∗)′
|tγ | exp[−2πδ|t|]dt

≤ KZn

∫ ∞

0

s|γ|+n−1 exp[−2πδs]ds = KZn(|γ|+ n− 1)!(2πδ)−|γ|−n.

Here we have used [7, Theorem 32, p. 39] in the second to last step in (18)

and integration by parts (|γ|+n− 1) times in the last step in (18), where K is

the constant as in (15) and Zn is the area of the unit sphere in R
n. Since the

last term of (18) is independent of z ∈ N ′(z0, r), the function h
γ,g
C′

∗

(z) converges

absolutely and uniformly for z ∈ N ′(z0, r). �

5. The relationship GM(A;C), K′

M
, and K′

M

In this section, we show that elements of GM (A;C) can be represented as the

Fourier-Laplace transform of distributions K′
M . Also we present representations

ofGM (A;C) as elements inK′
M

in terms of Fourier transforms inK′
M

of certain

elements in K′
M and strong boundedness for GM (A;C) as elements in K′

M
.

Theorem 1. Let M(x) and Ω(y) be the functions as in Definition 7. For

the open connected cone C, let f(z) ∈ GM (A;C). For any compact subcone

C′ ⊂ C, let m = m(C′) be a fixed real number which depends on C′ as in the

definition of GM (A;C). Then there exist a unique element V = Dα
t (g(t)) ∈

K′
M , where α is an n-tuple of nonnegative integers and g(t) is a continuous

function of t ∈ Rn such that the following are hold.

(I) For A ≥ 0

(19) f(z) = zαF [e−2π〈y,t〉g(t);x], z = x+ iy ∈ T (C′;m),

where the Fourier transform is taken in the L2 sense.

(II) For A ≥ 0, g(t) satisfies

(20) |g(t)| ≤ K(C′,m) exp[2π(M(Ay) + |y||t|)], t ∈ R
n,

where C′ ⊂ C is arbitrary and K(C′,m) depends on C′ and on m. Inequality

(20) is independent of y ∈ (C′\(C′ ∩N(0,m))) and supp(g) = supp(V ) ⊆ {t :
uC(t) ≤ A}.
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(III) For A > 0 and any compact subcone of C′
∗ ⊂ C∗ = Rn\C∗, g(t) satisfies

(21) |g(t)| ≤ M(C′
∗, η) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

, t ∈ C′
∗,

where any η ∈ (0, 1) is such that 1 − 2η > 0 and M(C′
∗, η) is a constant

depending on C′
∗ and on η.

(IV) Let A ≥ 0. If g(t) satisfies that |g(t)| ≤ Kek|t| for any t ∈ (C∗)′ and

for some constants K and k > 0, then

(22) f(z) = 〈V, e2πi〈z,t〉〉, z = x+ iy ∈ T (C′;m).

(V) For A ≥ 0,

(23) f(z) = F [e−2π〈y,t〉Vt], z = x+ iy ∈ T (C′;m),

where the equality in (23) holds in K′
M
.

(VI)

(24) {f(z) : y = Im(z) ∈ (C′\(C′ ∩N(0,m))), |y| ≤ Qm}
is strongly bounded in K′

M
, where Qm > m > 0.

Proof. Let C be an open connected cone and let C′ be an arbitrary open

compact subcone of C. For any compact subcone C′ ⊂ C, let m = m(C′)

be a fixed real number which depends on C′ as in the definition of GM (A;C)

corresponding to f(z). Since f(z) ∈ GM (A;C), we can choose an n-tuple α

of nonnegative integers which is independent of C′ and of m such that for

z = x+ iy ∈ T (C′;m) and ǫ > 0,

|z−αf(z)| ≤ K ′(C′;m)(1 + |z|)−n−ǫe2πM(Ay),(25)

where K ′(C′;m) is a constant and n is a dimension. Put

g(t) =

∫

Rn

z−αf(z)e−2πi〈z,t〉dx, z = x+ iy ∈ T (C′;m),(26)

which is a continuous function of t ∈ Rn. By [2, Theorem 1, p. 846] and (25),

g(t) is independent of y = Im(z) ∈ (C′\(C′ ∩N(0,m))).

Proof of (I). We have from (25) that z−αf(z) ∈ L1 ∩ L2 as a function of

x = Re(z) for an arbitrary y ∈ (C′\(C′ ∩N(0,m))). Thus from (26),

e−2π〈y,t〉g(t) = F−1[z−αf(z); t], z = x+ iy ∈ T (C′;m),(27)

where the Fourier transform is taken in the L2 sense. By the Plancherel theo-

rem, e−2π〈y,t〉g(t) ∈ L2 and

z−αf(z) = F [e−2π〈y,t〉g(t);x], z = x+ iy ∈ T (C′;m),(28)

where the Fourier transform is taken in the L1 or L2 sense. This complete the

proof of (I).

Proof of (II). From (25) and (26),

|g(t)| ≤ K ′(C′;m)e2πM(Ay)e2π〈y,t〉
∫

Rn

(1 + |x|)−n−ǫdx(29)
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≤ K ′′(C′;m) exp [2π(M(Ay) + 〈y, t〉)],
where K ′′(C′;m) is a constant. Since g(t) is independent of y = Im(z) ∈
(C′\(C′ ∩ N(0,m))), (29) holds independently of y = Im(z) ∈ (C′\(C′ ∩
N(0,m))). From exactly the same process in [1, pp. 846–847], we have that

supp(g) = supp(V ) ⊆ {t : uC(t) ≤ A}. This complete the proof of (II).

Consider

V = Dα
t (g(t)).(30)

Since g(t) is a continuous function and satisfies (II), g(t) ∈ K′
M by Lemma

8, hence V = Dα
t (g(t)) ∈ K′

M . In fact V = Dα
t (g(t)) ∈ K′

1 ⊂ K′
p, p > 1.

Proof of (III). Let C′
∗ be an arbitrary but fixed compact subcone of C∗. By

Lemma 4, for any η ∈ (0, 1), there exists a compact subcone C′ = C′(C′
∗, η)

of C ⊂ O(C), depending on C′
∗ and on η, such that we can find a point

y0t ∈ Pr(C′) where

−〈t, y0t 〉 ≥ (1− η)uC(t)

for any t ∈ C′
∗. Put

yt =
1

A
y0t

∣

∣

∣

∣

M−1

(

Ω

(

uC(t)

A

))∣

∣

∣

∣

.(31)

Since C′ is a cone and y0t ∈ Pr(C′), yt ∈ C′ ⊂ C for any t ∈ C′
∗. Choose a

real number R > 0 such that

R >
A(Ω−1(M(Am)))

ξ
,(32)

where m = m(C′) is as in the definition of GM (A;C) corresponding to f(z)

and ξ = ξ(C′
∗) is as in Lemma 2. Then for t ∈ C′

∗ with |t| > R > 0, we have

from Lemma 2, (31), and (32) that

|yt| =
1

A

∣

∣

∣

∣

M−1

(

Ω

(

uC(t)

A

))
∣

∣

∣

∣

≥ 1

A

∣

∣

∣

∣

M−1

(

Ω

(

ξt

A

))
∣

∣

∣

∣

(33)

≥ 1

A

∣

∣

∣

∣

M−1

(

Ω

(

ξR

A

))∣

∣

∣

∣

≥ m.

Hence if t ∈ C′
∗ with |t| > R > 0, yt ∈ (C′\(C′ ∩N(0,m))). We have from

(II) that for t ∈ C′
∗ with |t| > R

|g(t)| ≤ K(C′,m) exp[2π(M(Ayt) + 〈yt, t〉)].(34)

By Lemma 4 and (31), we have for all t ∈ C′
∗ that

〈yt, t〉 =
1

A

∣

∣

∣

∣

M−1

(

Ω

(

uC(t)

A

))∣

∣

∣

∣

〈y0t , t〉(35)

≤ −(1− η)
1

A
uC(t)

∣

∣

∣

∣

M−1

(

Ω

(

uC(t)

A

))∣

∣

∣

∣

.
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Since |y0t | = 1, we have from (31) that

M(Ayt) = Ω

(

uC(t)

A

)

.(36)

Applying (35) and (36) to (29), we have for all t ∈ C′
∗ with |t| > R that

|g(t)| ≤ K(C′,m) exp

[

2πΩ

(

uC(t)

A

)

−2π(1− η)
1

A
uC(t)M

−1

(

Ω

(

uC(t)

A

))]

.

(37)

Using the Young’s inequality in Lemma 6,

uC(t)M
−1

(

Ω

(

uC(t)

A

))

= A
uC(t)

A
M−1

(

Ω

(

uC(t)

A

))

(38)

≤ A

(

M

(

M−1

(

Ω

(

uC(t)

A

)))

+Ω

(

uC(t)

A

))

= 2AΩ

(

uC(t)

A

)

.

Applying (38) to (37), we have for all t ∈ C′
∗ with |t| > R that

|g(t)| ≤ K(C′,m) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

.(39)

We find the estimation like (39) for t ∈ C′
∗ with |t| ≤ R for a fixed R > 0 of

(32). Put

y′t = Qy0t(40)

for a y0t ∈ Pr(C′) corresponding to t ∈ C′
∗ ⊂ C∗ and a fixed Q > m > 0.

Then since y0t ∈ (C′\(C′ ∩ N(0,m))) and the estimation (29) of (II) holds

for t ∈ C′
∗ ⊂ C∗ independently of y ∈ (C′\(C′ ∩N(0,m))), we have from (29),

Lemma 4, and the fact that |y0t | = 1 that for t ∈ C′
∗,

|g(t)| ≤ K(C′,m) exp[2πM(AQ)] · exp[−2πQ(1− η)uC(t)].(41)

Since η ∈ (0, 1) and uC(t) > 0 for t ∈ C′
∗ ⊂ C∗, we have that

exp[−2πQ(1− η)uC(t)] ≤ 1, t ∈ C′
∗ ⊂ C∗.(42)

From (41) and Lemma 2, if we take η ∈ (0, 1) with 1 − 2η > 0, we have for

t ∈ C′
∗ with |t| ≤ R that

g(t) ≤ K(C′,m) exp[2πM(AQ)] · exp[−2πQ(1− η)uC(t)](43)

≤ K(C′,m) exp[2πM(AQ)]

= K(C′,m) exp[2πM(AQ)]

· exp
[

2π(1− 2η)Ω

(

uC(t)

A

)]

· exp
[

−2π(1− 2η)Ω

(

uC(t)

A

)]

≤ K(C′,m) exp[2πM(AQ)]
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· exp
[

2π(1− 2η)Ω

(

R

A

)]

· exp
[

−2π(1− 2η)Ω

(

uC(t)

A

)]

= K(C′,m)CA,Q(η) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

,

where the constantK(C′,m) depends on C′ and onm and the constant CA,Q(η)

depends on η for two fixed constants A and Q. Since C′ = C′(C′
∗, η) depends

on C′
∗ and on η and m = m(C′) depends on C′, K(C′,m)CA,Q(η) depends on

C′
∗ and on η for two fixed constants A and Q. Thus we can find a constant

M(C′
∗, η), depending on C′

∗ ⊂ C∗ and on η, such that if t is an element of

C′
∗ ⊂ C∗, then (21) holds for any η ∈ (0, 1) with 1 − 2η > 0. This completes

the proof of (III).

Proof of (IV). Firstly, in order to show that the Fourier transform in (19) can

be taken in the L1 sense, we will show that (e−2π〈y,t〉g(t)) ∈ LP , 1 ≤ p < ∞,

for A > 0 and y ∈ (C′\(C′ ∩N(0,m))). Let A > 0 and let p be arbitrary with

1 ≤ p < ∞. If we let y be arbitrary but fixed in (C′\(C′ ∩ N(0,m))), then

y ∈ C′ with |y| > m > 0. Also if we choose a positive real number ζ such that

0 < m/|y| < ζ < 1, then ζy ∈ C′ and |ζy| > m, hence ζy ∈ (C′\(C′∩N(0,m))).

Then we have from (29) that

|e−2π〈y,t〉g(t)|p ≤ K(C′,m)e−2πp〈y,t〉 exp[2πp(M(Aζy) + 〈ζy, t〉)](44)

≤ K(C′,m) exp[2πp(M(Aζy)] · exp[−2πp((1− ζ)〈y, t〉)]
for all t ∈ Rn. We have from the fact that (1− ζ) > 0, Lemma 3, (40), and [7,

p. 39, Theorem 3.2] that
∫

(C∗)′
|e−2π〈y,t〉g(t)|pdt(45)

≤ Kp(C′,m) exp[2πpM(Aζy)]

∫

(C∗)′
exp[−2πpδ(1− ζ)|y||t|]dt

≤ Kp(C′,m)Zn exp[2πpM(Aζy)]

∫ ∞

0

sn−1 exp[−2πpδ(1− ζ)|y|s]ds

= Kp(C′,m)Zn exp[2πpM(Aζy)](n− 1)!(2πpδ(1− ζ)|y|)−n.

Here we have used the same techniques as in (18) in the last two steps in (45),

where Zn is the area of the unit sphere in Rn.

Put C′
∗ = Rn\(C∗)′. Since C∗ ⊂ (C∗)′ and (C∗)′ is an open cone, C′

∗ is a

compact subcone of C∗ and (III) holds for C′
∗. Then we have from (14) that

∫

C′

∗

|e−2π〈y,t〉g(t)|pdt(46)

≤ K ′(C′
∗, A, η) exp

[

2πpTρC
A

ξ
· ω−1

(

TρC

1− 3η

)

− 2πp(1− η)Ω

(

ω−1

(

TρC

1− 3η

))]

,
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where K ′(C′
∗, A, η) is a constant depending on C′

∗, on a fixed η ∈ (0, 1), and on

a fixed A > 0. Here ξ = ξ(C′
∗) is the number in Lemma 2.

The open cone (C∗)′ in (45) is fixed depending on the compact subcone

C′ ⊂ O(C). Then the compact subcone C′
∗ ⊂ C∗ in (46) was defined by

C′
∗ = Rn\(C∗)′. Since (C∗)′ ∪ C′

∗ = Rn and (C∗)′ ∩ C′
∗ = ∅, we have from

(45) and (46) that (e−2π〈y,t〉g(t)) ∈ LP , 1 ≤ p < ∞, for A > 0 and y ∈
(C′\(C′ ∩N(0,m))).

Now if A = 0, then g(t) satisfies (29) and supp (g) ⊆ C∗. The open cone

(C∗)′ for which Lemma 3 holds contains C∗, hence we have from (45) that

(e−2π〈y,t〉g(t)) ∈ LP , 1 ≤ p < ∞, for y ∈ (C′\(C′ ∩N(0,m))).

Thus for either of the cases A > 0 or A = 0, the Fourier transform in (15)

can be taken in the L1 sense.

Secondly, we show that 〈V, e2π〈z,t〉〉 is well defined on T (C′;m). We consider
∫

Rn

g(t)e2πi〈z,t〉dt, z ∈ T (C′;m).(47)

Since (C∗)′ ∩ C′
∗ = ∅ and (C∗)′ ∪ C′

∗ = Rn, (47) can be rewrite as
∫

Rn

g(t)e2πi〈z,t〉dt =

∫

C′

∗

g(t)e2πi〈z,t〉dt+

∫

(C∗)′
g(t)e2πi〈z,t〉dt(48)

= h
0,g
C′

∗

+ h
0,g
(C∗)′ .

Here h
0,g
C′

∗

and h
0,g
(C∗)′ are the functions corresponding to (γ, g) = (0, g) in Lemma

12 and Lemma 13, respectively. Since T (C′;m) ⊂ TC′

, h
0,g
C′

∗

converges abso-

lutely and uniformly on TC′

by Lemma 12 and h
0,g
(C∗)′ converges absolutely and

uniformly on T (C′;m) by Lemma 13, 〈V, e2π〈z,t〉〉 is well-defined on T (C′;m).

Hence since the Fourier transform in (19) can be taken in the L1 sense

and 〈V, e2πi〈z,t〉〉 is well-defined on T (C′;m), if we use differentiation in the

distributional sense, then we have that

〈V, e2πi〈z,t〉〉 = (−1)|α|〈g(t), Dα
t (e

2πi〈z,t〉)〉(49)

= zα
∫

Rn

g(t)e2πi〈z,t〉dt = zαF [e−2π〈y,t〉g(t);x]

for z ∈ T (C′;m) and the Fourier transform is taken in either the L1 or L2

sense. From (19) and (49) we have (22). This completes the proof of (IV).

Proof of (V). The proof of (V) follows from only replacing Kr,Kr,K′
r, and K′

r

in proving (7.3) of [3, pp. 1056–1057] by KM , KM, K′
M , and K′

M
, respectively.

Proof of (VI). Firstly, we show that {e−2π〈y,t〉Vt : y ∈ (C′\(C′ ∩ N(0,m))),

|y| ≤ Qm}, Qm > M > 0, is strongly bounded set in K′
M . Let Φ be an

arbitrary bounded set in KM and let φ ∈ Φ. Since (e−2π〈y,t〉Vt) ∈ K′
M for any

y ∈ Rn, we have from Lemma 8 and general Leibnitz rule that for some n-tuple



ANALYTIC FUNCTIONS AND DISTRIBUTIONS 1821

α of nonnegative integers, some integer k ≥ 0, and some continuous function f

on Rn bounded by M > 0,

〈e−2π〈y,t〉Vt , φ(t)〉(50)

= 〈Dα
t (exp[M(kt)f(t)]) , e−2π〈y,t〉φ(t)〉

= (−1)|α|
∫

Rn

eM(kt)f(t)
∑

β+γ=α

α!

β!γ!

(

1

i

)|β|

yβe−2π〈y,t〉D
γ
t (φ(t))dt

= (−1)|α|
∑

β+γ=α

α!

β!γ!

(

1

i

)|β|

yβIy(γ),

where

Iy(γ) =

∫

Rn

eM(kt)f(t)e−2π〈y,t〉D
γ
t (φ(t))dt.(51)

Let Qm > 0 be an arbitrary but fixed real number. For y ∈ Rn with

|y| ≤ Qm, if we choose r ≥ max{|α|, 2k + 2πQm}, we have from Lemma 5 and

the fact that φ ∈ KM that

|Iy(γ)| ≤ M

∫

Rn

eM(kt)e2π|y||t| |Dγ
t (φ(t))| dt(52)

≤ M

∫

Rn

eM(kt)e2πQm|t| |Dγ
t (φ(t))| dt

≤ M

∫

Rn

e−M(kt)eM(2kt)eM(2πQmt) |Dγ
t (φ(t))| dt

≤ M

∫

Rn

eM((2k+2πQm)t) |Dγ
t (φ(t))| e−M(kt)dt

≤ M‖φ‖KM

∫

Rn

e−M(kt)dt,

where M is such that supt∈Rn |f(t)| ≤ M. Since Φ is a bounded set in KM ,

there exist a constant Wγ , depending only γ, such that ‖φ‖KM
≤ Wγ for all

φ ∈ Φ. Hence for each γ with β + γ = α,

|Iy(γ)| ≤ MWγ

∫

Rn

e−M(kt)dt = W ′
γ(53)

for all φ ∈ Φ. Thus we have from (50) and (53) that

∣

∣

∣
〈e−2π〈y,t〉Vt , φ(t)〉

∣

∣

∣
≤ W ′

γ

∑

β+γ=α

α!

β!γ!
Q|β|

m , φ ∈ Φ.(54)

Here the bound in (54) is independent of φ ∈ Φ. Hence {e−2π〈y,t〉Vt : y ∈
(C′\(C′ ∩ N(0,m))), |y| ≤ Qm}, Qm > M > 0, is a bounded set in complex

plane. Since Φ be an arbitrary bounded set in KM , {e−2π〈y,t〉Vt : y ∈ (C′\(C′∩
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N(0,m))), |y| ≤ Qm}, Qm > M > 0, is strongly bounded set in K′
M . Thus we

have from Lemma 10 and (23) that

{f(z) : y = Im(z) ∈ (C′\(C′ ∩N(0,m))), |y| ≤ Qm}
= {F [e−2π〈y,t〉Vt] : y = Im(z) ∈ (C′\(C′ ∩N(0,m))), |y| ≤ Qm}

is strongly bounded set in K′
M
. This completes the proof of (VI). �

We consider the converse of Theorem 1. We note that the inequality (20) in

Theorem 1 can be rewrite as

|g(t)| ≤ Kge
kg |t|, t ∈ R

n,(55)

for some two positive constants Kg and kg both of which are depend on g. We

will use the inequality (55) instead of the inequality (20) in the next theorem.

Theorem 2. Let C be an open connected cone in Rn and let C′
∗ be an arbitrary

compact subcone of C∗ = R
n\C∗. Let A > 0 be such that A/ξ ≤ 1, where

ξ = ξ(C′
∗) is a constant, depending on C′

∗, as in Lemma 2. Let V be a finite

sum

V =
∑

α

Dα
t (gα(t)),(56)

where each gα are continuous function of t ∈ Rn. Assume that for each n-tuple

of nonnegative integers α, gα(t) satisfies

|gα(t)| ≤ Kαe
kα|t|, t ∈ R

n,(57)

where some two positive constants Kα and kα both of which are depend on gα.

Also assume that each gα satisfies

(58) |gα(t)| ≤ M(C′
∗, η) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

, t ∈ C′
∗ ⊂ C∗,

for any η ∈ (0, 1) with 1− 3η > 0, where M(C′
∗, η) is a constant depending on

C′
∗ and on η. Then V ∈ K′

1 ⊂ K′
M . Furthermore the function

f(z) = 〈V, e2πi〈z,t〉〉

and any derivative of f(z) belong to GM

(

ρC

1−3η ;O(C)
)

.

Proof. Since gα(t) is continuous and gα(t) ∈ K′
1 ⊂ K′

M , V ∈ K′
1 ⊂ K′

M . Using

the differentiation in the distribution sense, we write f(z) as

f(z) = 〈V, e2πi〈z,t〉〉 =
∑

α

zα
∫

Rn

gα(t)e
2πi〈z,t〉dt.(59)

To show the existence and analyticity of f(z) for a certain z, consider

hα(z) =

∫

Rn

gα(t)e
2πi〈z,t〉dt.(60)
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Since (C∗)′ ∩ C′
∗ = ∅ and (C∗)′ ∪ C′

∗ = Rn, (60) can be rewritten by

hα(z) =

∫

Rn

gα(t)e
2πi〈z,t〉dt(61)

=

∫

C′

∗

gα(t)e
2πi〈z,t〉dt+

∫

(C∗)′
gα(t)e

2πi〈z,t〉dt

= h
0,α
C′

∗

(z) + h
0,α
(C∗)′(z),

where h
0,α
C′

∗

(z) and h
0,α
(C∗)′(z) are the functions corresponding to (γ, g) = (0, gα)

in Lemma 12 and Lemma 13, respectively.

Also we have from (59), the generalized Leibnitz rule, and the fact that

T (C′;m) ⊂ TC′

that

Dγ
z (f(z)) =

∑

α

∑

β+µ=γ

γ!

β!µ!
Dβ

z (z
α)

[

Dµ
z (
(

h
0,α
C′

∗

)

(z)) +Dµ
z (
(

h
0,α
(C∗)′

)

(z))
]

(62)

=
∑

α

∑

β+µ=γ

γ!

β!µ!
Dβ

z (z
α)(−1)|µ|

[

h
γ,α
C′

∗

(z) + h
γ,α

(C∗)′(z)
]

, z∈T (C′;m),

where γ, β and µ are n-tuples of nonnegative integers. Here h
γ,α
C′

∗

(z) and

h
γ,α

(C∗)′(z) are the functions corresponding to (γ, g) = (γ, gα) in Lemma 12 and

Lemma 13, respectively.

Let C′ be an arbitrary compact subcone of O(C). Choose mα = mα(C
′),

depending on α and on C′, such that

mα = (kα/(2πδ)) + 1,(63)

where kα is as in (57) and δ is as in Lemma 3. For mα > 0 in (63), let z0 be

an arbitrary but fixed point in T (C′;mα) = Rn + i(C′\(C′ ∩N(0,mα))). If we

choose an open neighborhood N ′(z0, r) of z0 with radius r > 0 whose closure

is contained in T (C′;mα) ⊂ TC′

, h
γ,α
C′

∗

(z) and h
γ,α

(C∗)′(z) converge absolutely

and uniformly for z ∈ N ′(z0, r) from Lemma 12 and Lemma 13, respectively.

Since z is an arbitrary point in T (C′;mα), we have from (62) that f(z) and its

derivative is analytic in T (C′;mα).

We put

m = max
α

{mα},(64)

where mα is as in (63) for each α. Since T (C′;m) ⊂ T (C′;mα), hα(z) in

(61) is analytic in T (C′;m) for each α, hence
∑

α zαhα(z) is also analytic in

T (C′;m). Thus f(z) = 〈V, e2πi〈z,t〉〉 and any derivative of f(z) are analytic in

T (C′;m), C′ ⊂ O(C), for the fixed m in (64).

Now we will obtain a growth of f(z) and any derivative of f(z) like the

inequality in the definition of GM (A;C) for any compact subcone C′ ⊂ O(C)

and the corresponding m > 0 taken in (64).
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In order to estimate integral representations of f(z) and any derivative of

f(z) of the form (59) on C′
∗, we will continue the estimation of inequalities in

(14) under the additional condition of A and ξ in this theorem.

Let A > 0 be such that A/ξ ≤ 1, where ξ = ξ(C′
∗) is a constant, depending

on C′
∗, as in Lemma 2 and let z ∈ N ′(z0, r) ⊂ TC′

, where N ′(z0, r) is an open

neighborhood of z0 with radius r > 0 whose closure is in TC′

.

If we replace T by |y| in (11), (12), and (13), we have from (14) that

|hγ,α
C′

∗

(z)| =
∣

∣

∣

∣

∣

∫

C′

∗

tγg(t)e2πi〈z,t〉dt

∣

∣

∣

∣

∣

(65)

≤ K ′(C′
∗, A, η) exp

[

2π|y|ρC
A

ξ
· ω−1

( |y|ρC
1− 3η

)

− 2π(1− 3η)Ω

(

ω−1

( |y|ρC
1− 3η

))]

for n tuples γ and α of nonnegative integers and all z ∈ N ′(z0, r), where

K ′(C′
∗, A, η) is a constant depending on fixed C′

∗, on fixed A > 0, and on fixed

η ∈ (0, 1) with 1− 3η > 0. By Lemma 6,

(66)
|y|ρC
1− 3η

· ω−1

( |y|ρC
1− 3η

)

= M

( |y|ρC
1− 3η

)

+Ω

(

ω−1

( |y|ρC
1− 3η

))

.

Since A/ξ ≤ 1 and 0 < 1− 3η < 1, we have from (66) that

|y|ρC
A

ξ
· ω−1

( |y|ρC
1− 3η

)

− (1− 3η)Ω

(

ω−1

( |y|ρC
1− 3η

))

(67)

≤ |y|ρC · ω−1

( |y|ρC
1− 3η

)

− (1− 3η)Ω

(

ω−1

( |y|ρC
1− 3η

))

= (1− 3η)M

( |y|ρC
1− 3η

)

≤ M

( |y|ρC
1− 3η

)

.

Applying (67) to (65), since z is an arbitrary point in TC′

, we have that for

n tuples γ and α of nonnegative integers

(68) |hγ,α
C′

∗

(z)| ≤ K ′(C′
∗, A, η) exp

[

M

( |y|ρC
1− 3η

)]

, z ∈ TC′

,

where K ′(C′
∗, A, η) is a constant depending on fixed C′

∗, on fixed A > 0 with

A/ξ ≤ 1, and on fixed η ∈ (0, 1) with 1− 3η > 0.

We now consider the integral representations of f(z) and any derivative of

f(z) in (59) on (C∗)′. Let mα and m be as in (63) and (64), respectively. Since

m ≥ mα for each mα, kα−2πδ|y| < −2πδ < 0 when |y| > m and y ∈ C′. Then

we have from Lemma 13 that for n tuples γ and α of nonnegative integers,

∣

∣

∣
h
γ,α

(C∗)′(z)
∣

∣

∣
=

∣

∣

∣

∣

∣

∫

(C∗)′
|tγ |g(t)e2πi〈z,t〉dt

∣

∣

∣

∣

∣

(69)
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≤ KαZn(|γ|+ n− 1)!(2πδ)−|γ|−n

= Qα(m,C′) < ∞, z ∈ T (C′;m),

where Qα(m,C′) is a constant depending on m chosen in (64) and on C′ ⊂
O(C) since δ = δ(C′) depends on C′.

Applying (68) and (69) to (62), we can find a nonnegative real number N

which does not depend on m chosen in (64) or on C′ such that for n tuples γ

and α of nonnegative integers and z ∈ T (C′;m),

|Dγ
z (f(z))| ≤

∑

α

Cα(1 + |z|)N(70)

·
[

K ′(C′
∗, A, η) exp

[

M

( |y|ρC
1− 3η

)]

+Qα(m,C′)

]

≤ K1(m,C′, A, η)(1 + |z|)N exp

[

M

( |y|ρC
1− 3η

)]

,

where K1(m,C′, A, η) is a constant depending on m chosen in (64), on C′, on

fixed A > 0 with A/ξ ≤ 1, and on fixed η ∈ (0, 1) with 1 − 3η > 0. Here we

note that C′
∗ = Rn\(C∗)′ depends on C′ ⊂ O(C). This complete the proof of

Theorem 2. �

We can extend the results that are described from last paragraph of [3,

p. 1060] to Corollary 7.1 of [3, p. 1061] to the results in the context of spaces

K′
M or spaces GM (A;C) by the exactly same line there as follow;

(i) Under the hypothesis of Theorem 2, (V) and (VI) are hold for z ∈
T (C′;m), C′ ⊂ O,m = m(C′) > 0.

(ii) Let C be an open connected cone and let C′
∗ be an arbitrary compact

subcone of C∗ = Rn\C∗. Let A > 0 be such that A/ξ ≤ 1, where ξ = ξ(C′
∗) is

a constant, depending on C′
∗, as in Lemma 2. If f(z) ∈ GM (A;C), then f(z)

and any derivative of f(z) can be extended to an element of GM

(

ρC

1−3η ;O(C)
)

for a constant η ∈ (0, 1) with 1− 3η > 0.

6. The relationship between FM(A;C), K′

M
, and K′

M
and

distributional boundary values of the spaces FM(A;C)

In this section, we only state without proof the relationship between

FM (A;C), K′
M , and K′

M
since the ideas, methods, and any others needed to

obtain the relationship between FM (A;C), K′
M , and K′

M
are the same as that

of obtaining the relationship between GM (A;C), K′
M and K′

M
in the previous

section.

Exceptionally, we show that the elements of the spaces FM (A;C) can obtain

distributional boundary values in K′
M
.

Theorem 3. Let M(x) and Ω(y) be the functions as in Definition 7. For

the open connected cone C, let f(z) ∈ FM (A;C). For any compact subcone

C′ ⊂ C, let m = m(C′) be a fixed real number which depends on C′ as in the
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definition of FM (A;C). Then there exist a unique element V = Dα
t (g(t)) ∈

K′
M , where α is an n-tuple of nonnegative integers and g(t) is a continuous

function of t ∈ Rn such that the following are hold.

(I) For A ≥ 0

f(z) = zαF [e−2π〈y,t〉g(t);x], z = x+ iy ∈ TC′

,

where the Fourier transform is taken in the L2 sense.

(II) For A ≥ 0, g(t) satisfies

|g(t)| ≤ K(C′,m) exp[2π(M(Ay) + |y||t|)], t ∈ R
n,(71)

where C′ ⊂ C is arbitrary and K(C′,m) depends on C′ and on m. Inequality

(71) is independent of y ∈ (C′\(C′ ∩N(0,m))) and supp(g) = supp(V ) ⊆ {t :
uC(t) ≤ A}.

(III) For A > 0 and any compact subcone of C′
∗ ⊂ C∗ = Rn\C∗, g(t) satisfies

|g(t)| ≤ M(C′
∗, η) exp

[

−2π(1− 2η)Ω

(

uC(t)

A

)]

, t ∈ C′
∗,

for any η ∈ (0, 1) with 1− 2η > 0, where M(C′
∗, η) is a constant depending on

C′
∗ and on η.

(IV) For A ≥ 0, if g(t) satisfies that |g(t)| ≤ Kek|t|, t ∈ (C∗)′, for some

constant K and k > 0, then

f(z) = 〈V, e2πi〈z,t〉〉, z = x+ iy ∈ TC′

.

(V) For A ≥ 0,

f(z) = F [e−2π〈y,t〉Vt], z = x+ iy ∈ TC′

,(72)

where the equality in (72) holds in K′
M
.

(VI)

{f(z) : y = Im(z) ∈ (C′\(C′ ∩N(0,m))), |y| ≤ Qm}
is strongly bounded in K′

M
, where Qm > m > 0.

(VII) f(z) → F [V ] ∈ K′
M

in the strong and weak topology of K′
M

as y =

Im(z) → 0, y ∈ C′ ⊂ C, where this boundary value is obtained independently

of how y → 0 in C′ ⊂ C.

Proof. It suffices to prove only (VII). Since V ∈ K′
M , if we replace K′

p and ek|t|
p

in the proof of Lemma 5.9 in [3, pp. 1052–1053] by K′
M and eM(kt), respectively,

we have that

lim
y→0

e−2π〈y,t〉Vt = Vt, y ∈ R
n,(73)

in the weak topology of K′
M . Since KM is a Montel space by Lemma 7, we

also have the convergence (73) in the strong topology of K′
M . Since the Fourier

transform is a topological isomorphism of K′
M onto K′

M
by Lemma 10, f(z) →

F [V ] ∈ K′
M

in the strong and weak topology of K′
M

as y = Im(z) → 0, y ∈
C′ ⊂ C. Since V is independent of how y → 0 in C′ ⊂ C, the boundary value
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F [V ] is obtained independently of how y → 0 in C′ ⊂ C. This completes the

proof of (VII). �
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