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NOTES ON NORMAL FAMILIES OF MEROMORPHIC

FUNCTIONS SHARING A SET WITH THEIR DERIVATIVES

Xiao-Min Li, Hong-Xun Yi, and Kai-Mei Wang

Abstract. We study the normality of families of meromorphic functions
sharing a set consisting of two or three distinct finite values to improve
and extend Theorem 1 in Liu-Pang [15] and Theorem 1.1 in Liu-Chang
[16]. Examples are provided to show that the results in this paper, in a
sense, are the best possible.

1. Introduction and main results

Let D be a domain on the complex plane C, and let F be a family of

meromorphic functions D. The family F is said to be normal in D, in the

sense of Montel, if each sequence {fn} ⊂ F contains either a subsequence that

converges to a meromorphic function uniformly on each compact subset of D,

or a subsequence which converges to ∞ uniformly on each compact subset of

D, see, e.g., Hayman [11], Schiff [23] and Yang [26].

Let f and g be two nonconstant meromorphic functions in a domain D ⊂ C,

and let S be a subset of distinct elements in the extended plane. Next we define

Ef (S) =:
⋃

a∈S{z : z ∈ D, f(z) = a}, where each a-point of f with multiplicity

m is repeated m times in Ef (S). Similarly we define

Ef (S) =:
⋃

a∈S

{z : z ∈ D, f(z) = a},

where each a-point in Ef ({a}) is counted only once. We say that f and g share

the set S CM in D, provided Ef (S) = Eg(S). We say that f and g share the

set S IM in D, provided Ef (S) = Eg(S) (see [10]). We say that f and g share

the value a CM in D if Ef ({a}) = Ef ({a}). Similarly we say that f and g share

the value a IM in D if Ef ({a}) = Ef ({a}). We recall the following result due

to Mues and Steinmetz [18]:
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Theorem A ([18, Satz 2]). Let f be a nonconstant meromorphic function and

let a1, a2 and a3 be distinct complex numbers. If f and f ′ share a1, a2, a3 IM,

then f = f ′.

Schwick [24] discovered a connection between normality criteria and shared

values and proved the following result:

Theorem B ([24, Theorem 2]). Let F be a family of meromorphic functions

in a domain D, and let a1, a2 and a3 be distinct complex numbers. If f and f ′

share a1, a2 and a3 IM in D for each f ∈ F, then F is normal in D.

Pang and Zalcman proved the following result to improve Theorem B:

Theorem C ([21, Theorem 2]). Let F be a family of meromorphic functions

in a domain D and let a, b be two nonzero distinct complex numbers. If f and

f ′ share a and b IM in D for each f ∈ F, then F is normal in D.

Frank-Schwick [8] generalized Theorem A as follows:

Theorem D. Let f be a nonconstant meromorphic function, let k be a positive

integer, and let a1, a2, and a3 be three distinct complex numbers. If f and f (k)

share a1, a2, a3 CM, then f = f (k).

Regarding Theorems B and D, one may ask, what can be said about the

conclusion of Theorem B, if f ′ is replaced with f (k) for k ≥ 2. Frank and

Schwick [9] observed that Theorem B does not admit the obvious extension

obtained by replacing f ′ as f (k). In this direction, Chen and Fang [4] proved

the following results:

Theorem E ([4, Theorem 1]). Let F be a family of meromorphic functions in

a domain D, let k ≥ 2 be a positive integer, and let a, b, c be complex numbers

such that a 6= b. If, for each f ∈ F, f and f (k) share a and b IM in D, and the

zeros of f − c are of multiplicity ≥ k + 1, then F is normal in D.

Theorem F ([4, Theorem 2]). Let F be a family of holomorphic functions in

a domain D, let k ≥ 2 be a positive integer, and let a, b, c be complex numbers

such that a 6= b. If, for each f ∈ F, f and f (k) share a and b IM in D, and the

zeros of f − c are of multiplicity ≥ k, then F is normal in D.

We recall the following example, which shows that some assumption on the

zeros of f − c is required for Theorems E and F to hold:

Example A ([4]). Let F = {fn(z) : fn(z) = n(ez − eλz), n = 1, 2, 3, . . . , },
where λk = 1 and λ 6= 1, k ≥ 2 is a positive integer. Then we can find that F is

a family of holomorphic functions in the domain D = {z : |z| < 1}. Obviously,

for each f ∈ F, we have f = f (k) and that f and f (k) share any complex

number b in D. But F is not normal in D.

Regarding Theorems B, C, E and F, one may ask, what can be said about

the conclusions of Theorems B, C, E and F, if, for each f ∈ F, f and f ′ or f and
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f (k) share the set {a1, a2, a3}, where F is a family of meromorphic functions in

a domain D, k ≥ 2 is a positive integer, and a1, a2, a3 are three distinct finite

complex values in the complex plane? In this direction, Fang [6] and Liu-Pang

[15], respectively proved the following results:

Theorem G ([6, Corollary 1]). Let F be a family of holomorphic functions in

a domain D, and let a1, a2 and a3 be distinct complex numbers in the complex

plane. If f and f ′ share {a1, a2, a3} IM in D for each f ∈ F, then F is normal

in D.

Theorem H ([15, Theorem 1]). Let F be a family of meromorphic functions in

a domain D, and let a1, a2 and a3 be distinct complex numbers in the complex

plane. If f and f ′ share {a1, a2, a3} IM in D for each f ∈ F, then F is normal

in D.

Next we denote by S1 and S2 two nonempty sets consisting of finitely many

distinct finite values in the complex plane, denote by |S1| and |S2| the numbers

of the elements in S1 and S2, respectively. Recently Liu-Chang [16] proved the

following results to extend Theorems G and H:

Theorem K ([16, Theorem 1.1]). Let F be a family of meromorphic functions

in a domain D, and let a1, a2 and a3 be distinct complex numbers in the complex

plane. Suppose that f(z) ∈ S1, z ∈ D if and only if f ′(z) ∈ S2, z ∈ D. If one

of the assumptions (a) |S1| ≥ 5; (b) |S1| ≥ 3, |S2| ≥ 3; and (c) |S2| ≥ 10 holds,

then F is normal in D.

Regarding Theorem K, one may ask:

Question 1.1. What can be said about the conclusions of Theorem K, if the

assumption “f(z) ∈ S1, z ∈ D if and only if f ′(z) ∈ S2, z ∈ D” is replaced

with “f(z) ∈ S1, z ∈ D if and only if f (k)(z) ∈ S2, z ∈ D, where k ≥ 2 is a

positive integer”?

Question 1.2 ([16]). Can we find an empty set S2 satisfying |S2| < 10 such

that the conclusion of Theorem K still holds if any other assumptions of The-

orem K are not changed?

We will prove the following results to deal with Questions 1.1 and 1.2:

Theorem 1.1. Let F be a family of meromorphic functions in a domain D,

let k ≥ 2 be a positive integer, and let S1 = {a1, a2} and S2 = {b1, b2}, where
a1, a2, b1, b2 ∈ C such that a1 6= a2 and b1 6= b2. Suppose that f(z) ∈ S1, z ∈ D

if and only if f (k)(z) ∈ S2, z ∈ D. If, for each f ∈ F, every zero of f − a1 and

f − a2 is of multiplicity ≥ k, then F is normal in D.

Theorem 1.2. Let F be a family of meromorphic functions in a domain D ⊂
C, and let S1 = {a1, a2} and S2 = {b1, b2}, where a1, a2, b1, b2 ∈ C such that

a1 6= a2, b2/b1 6∈ Z− ∪ Z+ and b1/b2 6∈ Z− ∪ Z+, where Z+ and Z− denote the

set of positive integers and the set of negative integers, respectively. Suppose
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that f(z) ∈ S1, z ∈ D if and only if f ′(z) ∈ S2, z ∈ D. If, for each f ∈ F,

every pole of f is of multiplicity ≥ 2, then F is normal in D.

From Theorem 1.2 we can get the following result:

Corollary 1.1. Let F be a family of holomorphic functions in a domain D ⊂ C,

and let S1 = {a1, a2} and S2 = {b1, b2}, where a1, a2, b1, b2 ∈ C such that

a1 6= a2, b2/b1 6∈ Z− ∪ Z+ and b1/b2 6∈ Z− ∪ Z+, where Z+ and Z− denote the

set of positive integers and the set of negative integers, respectively. Suppose

that f(z) ∈ S1, z ∈ D if and only if f ′(z) ∈ S2, z ∈ D. Then F is normal in

D.

The following example shows that the number 3 of elements of S in Theorems

G and H is best possible, and shows that the assumption “b2/b1 6∈ Z− ∪ Z+

and b1/b2 6∈ Z
− ∪ Z

+” in Theorem 1.2 and Corollary 1.1 is necessary.

Example B ([7]). Let S = {1,−1}. Set F = {fn(z) : n = 2, 3, 4, . . .}, where

fn(z) =
n+ 1

2n
enz +

n− 1

2n
e−nz, D = {z : |z| < 1}.

Then, for each fn ∈ F, we have n2[f2
n(z) − 1] = [f ′

n(z)]
2 − 1. Thus fn and f ′

n

share S CM in D, but F is not normal in D.

We also prove the following result to deal with Questions 1.1 and 1.2:

Theorem 1.3. Let F be a family of meromorphic functions in a domain D ⊂
C, and let S1 = {a1, a2} and S2 = {b1, b2, b3}, where a1, a2, b1, b2, b3 ∈ C such

that a1 6= a2 and that b1, b2, b3 are distinct. Suppose that f(z) ∈ S1, z ∈ D

if and only if f ′(z) ∈ S2, z ∈ D. If, for each f ∈ F, every pole of f is of

multiplicity ≥ 2, then F is normal in D.

From Theorem 1.3 we can get the following result:

Corollary 1.2. Let F be a family of holomorphic functions in a domain D ⊂ C,

and let S1 = {a1, a2} and S2 = {b1, b2, b3}, where a1, a2, b1, b2, b3 ∈ C such that

a1 6= a2 and that b1, b2, b3 are distinct. Suppose that f(z) ∈ S1, z ∈ D if and

only if f ′(z) ∈ S2, z ∈ D. Then F is normal in D.

2. Some lemmas

In this section, we introduce some important lemmas to prove the main

results in this paper. First of all, we introduce the following result due to

Pang-Zalcman:

Lemma 2.1 (Pang-Zalcman Lemma, [19] and [22, Lemma 2]). Let F be a

family of functions meromorphic on the unit disc, all of whose zeros have mul-

tiplicity at least k, and suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A

whenever f(z) = 0, f ∈ F. Then, if F is not normal, there exist, for each
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−1 < α ≤ k, we have: (a) a number 0 < r < 1; (b) points zn, |zn| < r; (c)

functions fn ∈ F, and (d) positive numbers ρn → 0 such that

f(zn + ρnζ)

ρα
=: gn(ζ) → g(ζ)

locally uniformly with respect to the spherical metric, where g is a nonconstant

meromorphic function on C such that g#(ζ) ≤ g#(0) = kA+ 1.

Remark 2.1. Suppose additionally in Lemma 2.1 that F is a family of zero-free

meromorphic functions in the domain D. Then the real number α in Lemma

2.1 can be such that −1 < α < ∞.

Lemma 2.2 ([3, Lemma 1]). Let f be a meromorphic function on C. If f has

bounded spherical derivative on C, f is of order at most 2. If, in addition, f is

entire, then the order of f is at most 1.

Lemma 2.3 (Valiron-Mokhonko lemma, [17]). Let f be a nonconstant mero-

morphic function, and let F =
∑p

k=0
akf

k

∑q

j=0
bjfj be an irreducible rational function in

f with constant coefficients {ak} and {bj}, where ap 6= 0 and bq 6= 0. Then

T (r, F ) = d T (r, f) +O(1), where d = max {p, q}.
Next we use the notion of a totally ramified value of a meromorphic function:

We say that a value a ∈ C ∪ {∞} is a totally ramified value of a meromorphic

function f if all a-points of f are multiple. A classical result of Nevanlinna

says that a nonconstant function meromorphic in the plane can have at most

4 totally ramified values, and that a nonconstant entire function can have at

most 2 finite totally ramified values (see [1]).

Lemma 2.4 ([1, Lemma 5]). Let f be a nonconstant entire function of order

at most 1 for which 1 and −1 are totally ramified. Then f(z) = cos(az + b),

where a, b ∈ C are constants and a 6= 0.

Lemma 2.5 ([25, Theorem 1.10]). Suppose that f is a nonconstant rational

function. Then f has only one deficient value in the extended complex plane.

We need the following result in Langley [14]:

Lemma 2.6 ([14, Theorem 1.2]). Suppose that f is meromorphic of finite order

in the complex plane, and that f (k) has finitely many zeros, for some k ≥ 2.

Then f has finitely many poles.

Lemma 2.7 ([25, Theorem 1.5]). Suppose that f is a transcendental meromor-

phic function in the complex plane. Then

lim
r→∞

T (r, f)

log r
= ∞.

Finally we give the following results due to Chang-Wang [2]:
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Lemma 2.8 ([2, Lemma 10]). Let P be a nonconstant polynomial of degree k,

and a and b distinct nonzero finite values. If P (z) = 0 if and only if P ′(z) is

in {a, b}, then k ≥ 2 and either a+ (k − 1)b = 0 or (k − 1)a+ b = 0.

Lemma 2.9 ([2, Lemma 11]). Let R be a non-polynomial rational function,

and a and b distinct finite values. If R(z) = 0 if and only if R′(z) ∈ {a, b},
then ab 6= 0 and either R(z) = a(z − z0) + d/(z − z0)

n with b = (n + 1)a or

R(z) = b(z − z0) + d/(z − z0)
n with a = (n + 1)b, where d(6= 0) and z0 are

constants and n is a positive integer.

3. Proof of theorems

Proof of Theorem 1.1. We may assume that D = {z : |z| < 1}. Suppose that

F is not normal in D. Without loss of generality, we assume that F is not

normal at z0 = 0. Then, by Lemma 2.1, Remark 2.1 and the assumption that

f(z) ∈ {a1, a2}, z ∈ D if and only if f (k)(z) ∈ {b1, b2}, z ∈ D, we can find

that there exist points zn → 0, |zn| < 1, positive numbers ρn → 0+ and a

subsequence of functions fn ∈ F such that

(3.1) fn(zn + ρnζ)− a1 =: gn(ζ) → g(ζ)

and

(3.2) fn(zn + ρnζ)− a2 = gn(ζ) + a1 − a2 → g(ζ) + a1 − a2

spherical uniformly on compact subsets of C, where g is some nonconstant

meromorphic function such that g#(ζ) ≤ g#(0) = kA+1,where A = |b1|+|b2|+
1. Moreover, from Lemma 2.2 we can find ρ(g) ≤ 2. By Hurwitz’s Theorem and

the assumption of Theorem 1.1 we can find that every zero of g and g+a1−a2
is of multiplicity ≥ k. Next we prove that 0 is a Picard exceptional value of g

and g + a1 − a2. We consider the following two cases:

Case 1. Suppose that 0 is not a Picard exceptional value of one of g and

g + a1 − a2. Without loss of generality, we suppose that 0 is not a Picard

exceptional value of one of g. Then, there exists some point ζ0 ∈ C such that

g(ζ0) = 0. Set

(3.3) Hk = {hn : n = 1, 2, 3, . . .},
where hn(ζ) = ρ−k

n gn(ζ) = ρ−k
n (fn(zn + ρnζ) − a1). Now we claim that Hk is

not normal at ζ0. Indeed, if Hk is normal at ζ0, then, for a given sequence of

functions {hn} ⊆ Hk, there exist a subsequence of {hn} say itself such that

(3.4) hn(ζ) → h(ζ)

or possibly

(3.5) hn(ζ) → ∞
spherical uniformly on C, as n → ∞. Noting that g 6≡ 0, we can find, by

Hurwitz’s Theorem, that there exist a sequence of points ζn such that gn(ζn) =
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0 and ζn → ζ0 as n → ∞. Therefore

(3.6) h(ζ0) = lim
n→∞

ρ−k
n gn(ζn) = 0.

From (3.6) we can find that (3.4) is valid and so (3.5) is invalid. By the

property that zeros of a nonconstant analytic function are isolated, we can

find that there exists some deleted neighborhood △′(ζ0, δ(ζ0)) = {ζ : 0 <

|ζ − ζ0| < δ(ζ0)} of ζ0 such that g(ζ) 6= 0,∞ for any ζ ∈ △′(ζ0, δ(ζ0)), where

δ(ζ0) is some positive number that depends only upon ζ0. Then, for a given

point ζ ∈ △′(ζ0, δ(ζ0)), there exists some positive number ρ(ζ) that depends

only upon ζ such that |gn(ζ)| ≥ ρ(ζ) for the large positive integer n. Therefore

h(ζ) = limn→∞ ρ−k
n gn(ζ) = ∞, and so h = ∞, which contradicts the facts

h 6≡ ∞. Therefore, Hk is not normal at ζ0. Combining this with Lemma 2.1,

we can find that there exist points ζn such that ζn → ζ0, positive numbers ηn
such that ηn → 0+ and a subsequence of functions hn ∈ Hk such that

(3.7) η−k
n hn(ζn + ηnξ) =

gn(ζn + ηnξ)

ρknη
k
n

=: Gn(ξ) → G(ξ)

spherical uniformly on compact subsets of C, where G is some nonconstant

meromorphic function such that G#(ξ) ≤ G#(0) = kA + 1, where A = |b1| +
|b2|+1. Moreover, by Lemma 2.2 we have ρ(G) ≤ 2. By (3.1), (3.7), Hurwitz’s

Theorem and the assumptions of Theorem 1.1 we can find that every zero of

G is of multiplicity ≥ k. Now we prove the following claims:

(i) The number of zeros of G in C is finite; (ii) EG({0}) = EG(k)(S2).

We prove the claim (i): Let ζ0 be a zero of g with multiplicity p ≥ 1. Then,

the number of zeros of G in C is not more than p. On the contrary, suppose that

there exist p+1 distinct points ξ1, ξ2, . . . , ξp, ξp+1 in C such that G(ξj) = 0 for

1 ≤ j ≤ p+ 1. Combining this with the fact G 6≡ 0, we can find, by Hurwitz’s

Theorem, that there exist a sequences of points ξnj
satisfying ξnj

→ ξj for

1 ≤ j ≤ p + 1 such that Gn(ξnj
) = 0 for the large positive number n, and so

we have, by (3.7), that gn(ζn + ηnξnj
) = 0. Noting that ζn + ηnξnj

→ ζ0 for

1 ≤ j ≤ p+1, we can deduce, by Hurwitz’s Theorem, that ζ0 is a zero of g with

multiplicity ≥ p+ 1, which contradicts the above supposition. This proves the

claim (i).

We prove the claim (ii): Let G(ξ0) = 0. Then, by Hurwitz’s Theorem and

the fact G 6≡ 0 we can find from (3.1) and (3.7) that there exist a sequences

of points ξn satisfying ξn → ξ0, such that Gn(ξn) = 0, and so fn(zn + ρn(ζn +

ηnξn)) = a1 for the large positive integer n. Combining this with the assumption

Ef (S1) = Ef(k)(S2), we have G
(k)
n (ξn) = f

(k)
n (zn+ ρn(ζn + ηnξn)) ∈ S2, and so

G(k)(ξ0) = limn→∞ G
(k)
n (ξn) ∈ S2. This implies

(3.8) EG({0}) ⊆ EG(k)(S2).

Next we prove

(3.9) EG(k)(S2) ⊆ EG({0}).
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Let G(k)(ξ0) = s2, s2 ∈ S2. First of all, we prove G(k) 6≡ s2. On the contrary,

we suppose that G(k) = s2. If s2 = 0, then G is a nonconstant polynomial

with multiplicity ≤ k − 1, which contradicts the fact that every zero of G is

of multiplicity ≥ k. If s2 6= 0, then G is a polynomial of degree k such that

G(ξ) =
s2(ξ−ξ1)

k

k! , where ξ1 is a complex number. Therefore,

G#(0) ≤
{

k
2 , if |ξ1| ≥ 1,

|s2|, if |ξ1| < 1,

which contradicts the fact G#(0) = kA + 1 and A = |b1| + |b2| + 1. Hence,

by Hurwitz’s Theorem and the fact G(k) 6≡ s2 we can find that there exist a

sequence of points ξn satisfying ξn → ξ0, such that G
(k)
n (ξn) = f

(k)
n (zn+ρn(ζn+

ηnξn)) = s2 ∈ S2 for the large positive integer n. Combining this with the

assumption Ef (S1) = Ef(k)(S2), we have fn(zn + ρn(ζn + ηnξn)) ∈ S1. Hence,

there exists a subsequence of {fn}, say itself such that fn(zn+ρn(ζn+ηnξn)) =

s1 for the large positive integer n, where s1 ∈ S1 is some complex number.

Suppose that s1 6= a1, then we have from (3.1) and (3.7) that

G(ξ0) = lim
n→∞

Gn(ξn) = lim
n→∞

s1 − a1

ρknη
k
n

= ∞,

which contradicts the fact

G(k)(ξ0) = lim
n→∞

G(k)
n (ξn) = lim

n→∞
f (k)
n (zn + ρn(ζn + ηnξn)) = s2.

Suppose that s1 = a1, and so we have from (3.1) and (3.7) that

G(ξ0) = lim
n→∞

Gn(ξn) = 0,

which implies (3.9). From (3.8) and (3.9) we have the claim (ii). We consider

the following two cases:

Subcase 1.1. Suppose that G, and so G(k) is a transcendental meromorphic

function. Then, by the second fundamental theorem and the claims (i) and (ii)

we have

T (r,G(k)) ≤ N(r,G) +

2
∑

j=1

N

(

r,
1

G(k) − bj

)

+O(log r)

≤ N(r,G) +N

(

r,
1

G

)

+O(log r)

≤ N(r,G) +O(log r),

this together with the fact N(r,G) + kN(r,G) = N(r,G(k)) ≤ T (r,G(k)) gives

N(r,G) ≤ (1− k)N(r,G) +O(log r) ≤ O(log r),

as r −→ ∞. Hence G has finitely many poles in the complex plane. Combining

this with the claim (i) and Lemma 1.24 [25] and the fact that G is of finite
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order, we have

N

(

r,
1

G(k)

)

≤ N

(

r,
1

G

)

+ kN(r,G) +O(log r) ≤ O(log r),

and so G(k) has finitely many zeros in the complex plane. Therefore

(3.10) G(k) =
P1

P2
eα,

where P1 and P2 are nonzero polynomials, α is a nonconstant polynomial such

that its degree satisfies deg(α) = 1 or deg(α) = 2. Noting that one of b1 and b2
is a finite nonzero value, say b1 6= 0, we can get by (3.10), Hayman [11, p. 7]

and the second fundamental theorem that

(3.11)

|a0|rdeg(α)
π

∼ T (r,G(k))

≤ N(r,G(k)) +N

(

r,
1

G(k)

)

+N

(

r,
1

G(k) − b1

)

+O(log r)

= N

(

r,
1

G(k) − b1

)

+O(log r),

where a0 is the coefficient of the highest term of the polynomial α. From (3.11)

we can find that G(k) − b1 has infinitely many zeros of in the complex plane,

which contradicts the above claim (i) and (ii).

Subcase 1.2. Suppose that G is a nonconstant rational function. We

consider the following two subcases:

Subcase 1.2.1. Suppose that G is a nonconstant polynomial. Then, by the

claims (i), (ii) and the second fundamental theorem we have

(3.12)

T (r,G(k)) ≤ N(r,G) +

2
∑

j=1

N

(

r,
1

G(k) − bj

)

+O(1) ≤ N

(

r,
1

G

)

+O(1).

By Lemma 2.3 we have

(3.13) T (r,G(k)) = (deg(G)− k) log r +O(1).

Noting that every zero of G is of multiplicity ≥ k, we can get from Lemma 2.3

that

(3.14) N

(

r,
1

G

)

≤ 1

k
N

(

r,
1

G

)

≤ deg(G)

k
log r +O(1).

From (3.12)-(3.14) we get

(deg(G)− k) log r ≤ deg(G)

k
log r +O(1),

and so we have

(3.15) (k − 1) deg(G) ≤ k2.
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Suppose that G has only one zero in the complex plane. Then

(3.16) G(ξ) = c0(ξ − ξ̂1)
deg(G).

Noting that every zero of G is of multiplicity ≥ k, we can get from (3.16) and

the above claim (ii) we can get a contradiction.

Suppose that G has at least two distinct zeros in the complex plane. Then,

by the assumption that every zero of G is of multiplicity ≥ k, we can deduce

that deg(G) ≥ 2k. This together with (3.15) gives

(3.17) 2k(k − 1) ≤ (k − 1) deg(G) ≤ k2.

From (3.17) and the assumption k ≥ 2 we deduce k = 2. Combining this with

(3.17) and the claims (i) and (ii), we deduce that deg(G) = 4 and that G has

and only has two distinct zeros such that every zero of G is of multiplicity 2,

and so we have b1 6= 0 and b2 6= 0, this together with the assumption b1 6= b2
implies that every zero of (G′′ − b1)(G

′′ − b2) is of multiplicity 2. Therefore, by

Lemma 2.4 we have

(3.18) G′′(ζ) =
a2 − a1

2
[1 + cos(A1ζ +B1)] =

a2 − a1

2
· [e

i(A1ζ+B1) + 1]2

2ei(A1ζ+B1)
,

where A1 6= 0 and B1 are constants. This contradicts the fact that G, and so

G′′ is a nonconstant polynomial.

Subcase 1.2.2. Suppose that G is a nonconstant rational function that is

not a polynomial. Then

(3.19) G(ξ) = cmξm + cm−1ξ
m−1 + · · ·+ c1ξ + c0 +

P3(ξ)

P4(ξ)
,

where cm, cm−1, . . . , c1, c0 are complex numbers and cm 6= 0, m ≥ 0 is an

integer, P3 and P4 are two relatively prime polynomials such that P3 6≡ 0 and

that P4 is not a constant, and that deg(P3) < deg(P4). Set

(3.20) P4(ξ) = αl(ξ − ξ1)
n1(ξ − ξ2)

n2 · · · (ξ − ξt)
nt ,

where αl 6= 0 is a constant, t ≥ 1 is a positive integer, n1, n2, . . . , nt are t

positive integers such that l = n1+n2+ · · ·+nt, and ξ1, ξ2, . . . , ξt are t distinct

finite complex values. By (3.19) and (3.20) we have

(3.21) N(r,G(k)) = (l+tk) log r+O(1), N(r,G) = N(r,G(k)) = t log r+O(1),

By the claims (i), (ii) and the second fundamental theorem we deduce

(3.22) T (r,G(k)) ≤ N(r,G) +N

(

r,
1

G

)

+O(1).

We discuss as follows:
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Suppose that m ≥ k. Then, by the fact that every zero of G is of multiplicity

≥ k ≥ 2, we can get by (3.19), (3.20) that

(3.23)

N

(

r,
1

G

)

≤ 1

k
N

(

r,
1

G

)

=
m+ l

k
log r +O(1)

≤ m+ l

2
log r +O(1)

and

(3.24)

T (r,G(k)) = N

(

r,
1

G(k)

)

+O(1)

= [(m− k) + (l + tk)] log r +O(1)

= [m+ l + (t− 1)k)] log r +O(1).

From (3.21)-(3.24) we have

[m+ l + (t− 1)k)] log r ≤
(

m+ l

2
+ t

)

log r +O(1),

and so

(3.25)
m+ l

2
≤ 2− t.

Noting that m, l and t are positive integers, we can deduce from (3.25) that

m = l = t = 1. Combining this with (3.20), we can find that (3.19) can be

rewritten as

(3.26) G(ξ) = c1ξ + c0 +
c−1

ξ − ξ1
,

where P3/α1 = c1 is a nonzero constant. Noting that k ≥ 2 is a positive integer,

we can get from (3.26) that

(3.27) G(k)(ξ) =
c−1(−1)kk!

(ξ − ξ1)k+1
.

From (3.27) we have

(3.28)

(G(k)(ξ)− b1)(G
(k)(ξ)− b2)

=
[c−1(−1)kk!− b1(ξ − ξ1)

k+1][c−1(−1)kk!− b2(ξ − ξ1)
k+1]

(ξ − ξ1)2(k+1)
.

From (3.26), (3.28), the above claim (ii) and k ≥ 2, we can get a contradiction.

Suppose that m < k. Then, from (3.19), (3.20), the left equality of (3.21)

and the fact that every zero of G is of multiplicity ≥ k ≥ 2, we have (3.23) and

(3.29) T (r,G(k)) = N(r,G(k)) +O(1) = (l + tk) log r +O(1).
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By substituting (3.23), (3.29) and the right equality of (3.21) into (3.22) we

have

(l + tk) log r ≤ t log r +
m+ l

k
log r +O(1),

which implies that l+tk ≤ t+m+l
k

. Combining this with the assumptionm < k,

we have (k − 1)l + (k − 1)tk ≤ m < k, which is impossible.

Case 2. Suppose that 0 is a Picard exceptional value of g and g + a1 − a2.

Then, from Lemma 2.5 we can see that g is a transcendental meromorphic

function. From (3.1) and (3.2) we have

(3.30) [ρkn(f
(k)
n (zn + ρnζ) − b1)][ρ

k
n(f

(k)
n (zn + ρnζ) − b2)] → [g(k)(ζ)]2

spherical uniformly on compact subsets of C. By the supposition that 0 is a

Picard exceptional value of g we have g(k) 6≡ 0. Noting that f(z) ∈ S1, z ∈ D

if and only if f (k)(z) ∈ S2, z ∈ D, from (3.1), (3.2), (3.28), Hurwitz’s Theorem

and the supposition that 0 is a Picard exceptional value of g and g+a1−a2 we

can deduce g(k) 6= 0. Combining this with ρ(g) ≤ 2 and Lemma 2.6 we can find

that g has finitely many poles in the complex plane. Therefore, by the second

fundamental theorem we have

(3.31)
T (r, g) ≤ N(r, g) +N

(

r,
1

g

)

+N

(

r,
1

g + a1 − a2

)

+O(log r)

≤ O(log r).

From (3.31) and Lemma 2.7 we can see that g is a rational function, which is

impossible. Theorem 1.1 is thus completely proved. �

Proof of Theorem 1.2. We may assume that D = {z : |z| < 1}. Suppose that

F is not normal in D. Without loss of generality, we assume that F is not

normal at z0 = 0. Then, by Lemma 2.1, Remark 2.1 and the assumption

Ef (S1) = Ef ′(S2) we can find that there exist points zn → 0, |zn| < 1, positive

numbers ρn, ρn → 0+ and a subsequence of functions fn ∈ F such that (3.1)-

(3.2) hold, where g(ζ) is some nonconstant meromorphic function such that

g#(ζ) ≤ g#(0) = kA+1, where A = |b1|+ |b2|+1. Moreover, from Lemma 2.2

we can find ρ(g) ≤ 2. By the assumptions of Theorem 1.2 we find that every

pole of fn is of multiplicity ≥ 2. Combining this with Hurwitz’s Theorem, we

can find that every pole of g is of multiplicity ≥ 2. We consider the following

two cases:

Case 1. Suppose that 0 is not a Picard exceptional value of one of g and

g + a1 − a2. Without loss of generality, we suppose that 0 is not a Picard

exceptional value of one of g. Then, there exists some point ζ0 ∈ C such that

g(ζ0) = 0. Set

(3.32) H1 = {ĥn : n = 1, 2, 3, . . .},
where ĥn(ζ) = ρ−1

n gn(ζ) = ρ−1
n (fn(zn + ρnζ) − a1). In the same manner as in

the proof of Theorem 1.1 we can prove that H1 is not normal at ζ0. Combining



NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS 1785

this with Lemma 2.1, we can find that there exist some points ζn such that

ζn → ζ0, some positive numbers ηn such that ηn → 0+ and some subsequence

of functions ĥn ∈ H1 such that

(3.33) η−1
n ĥn(ζn + ηnξ) =

gn(ζn + ηnξ)

ρnηn
=: Ĝn(ξ) → Ĝ(ξ)

spherical uniformly on compact subsets of C, where Ĝ is some nonconstant

meromorphic function such that Ĝ#(ξ) ≤ Ĝ#(0) = A+1, where A = |b1|+|b2|+
1. Noting that every pole of fn is of multiplicity ≥ 2, we can deduce by (3.1),

(3.32), (3.33) and Hurwitz’s Theorem that every pole of Ĝ is of multiplicity

≥ 2. By Lemma 2.2 we have ρ(Ĝ) ≤ 2. In the same manner as in the proof of

Theorem 1.1 we can prove following claims:

(iii) The number of zeros of Ĝ in C is finite; (iv) E
Ĝ
({0}) = E

Ĝ′
(S2).

We consider the following two subcases:

Subcase 1.1. Suppose that Ĝ, and so Ĝ′ is a transcendental meromorphic

function. Then, by the fact ρ(Ĝ) = ρ(Ĝ′) ≤ 2, the claims (iii) and (iv), and

the second fundamental theorem we have

T (r, Ĝ′) ≤ N(r, Ĝ′) +

2
∑

j=1

N

(

r,
1

Ĝ′ − bj

)

+O(log r)

≤ 1

2
N(r, Ĝ′) +N

(

r,
1

Ĝ

)

+O(log r)

≤ 1

2
T (r, Ĝ′) +O(log r),

which implies that T (r, Ĝ′) = O(log r). Combining this with Lemma 2.7 we can

see that Ĝ′ is a rational function, which is impossible.

Subcase 1.2. Suppose that Ĝ is a rational function. We consider the

following two subcases:

Suppose that Ĝ is a nonconstant polynomial. Then, by the above claim

(iv) and Lemma 2.8 we deduce deg(Ĝ) =: l ≥ 2 and either (l − 1)b1 + b2 = 0

or (l − 1)b2 + b1 = 0, and so we have b2/b1 ∈ Z− or b1/b2 ∈ Z−, which

contradicts the assumptions b2/b1 6∈ Z− ∪Z+ and b1/b2 6∈ Z− ∪Z+ of Theorem

1.2. Next we suppose that Ĝ is a nonconstant rational function. Then, by the

above claim (iv) and Lemma 2.9 we can see that b1b2 6= 0 and either Ĝ(ξ) =

b1(ξ − ξ0) + d/(ξ − ξ0)
n with b2 = (n+1)b1 or Ĝ(ξ) = b2(ξ − ξ0) + d/(ξ − ξ0)

n

with b1 = (n + 1)b2, where d 6= 0 and ξ0 are constants, n ≥ 1 is a positive

integer. Combining this with b1b2 6= 0, we have b2/b1 ∈ Z+ or b1/b2 ∈ Z+,

which contradicts the assumptions b2/b1 6∈ Z− ∪ Z+ and b1/b2 6∈ Z− ∪ Z+ of

Theorem 1.2.

Case 2. Suppose that 0 is a Picard exceptional value of one of g and

g + a1 − a2. Then, by Lemma 2.5 we can deduce that g is a transcendental
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meromorphic function. From the fact ρ(g) ≤ 2, the fact that every pole of g is

of multiplicity ≥ 2 and the second fundamental theorem, we have

T (r, g) ≤ N(r, g) +N

(

r,
1

g

)

+N

(

r,
1

g + a1 − a2

)

+O(log r)

≤ 1

2
N(r, g) +O(log r)

≤ 1

2
T (r, g) +O(log r),

i.e., T (r, g) = O(log r). Combining this with Lemma 2.7 we can see that g is a

rational function, which is impossible. This proves Theorem 1.2. �

Proof of Theorem 1.3. We may assume that D = {z : |z| < 1}. Suppose that

F is not normal in D. Without loss of generality, we assume that F is not

normal at z0 = 0. Then, by Lemma 2.1, Remark 2.1 and the assumption

Ef (S1) = Ef ′(S2) we can find that there exist points zn → 0, |zn| < 1,

positive numbers ρn, ρn → 0+ and a subsequence of functions fn ∈ F such

that (3.1) and (3.2) hold, where g is a nonconstant meromorphic function such

that g#(ζ) ≤ g#(0) = kA+ 1, where A = |b1|+ |b2|+ |b3|+ 1. Moreover, from

Lemma 2.2 we can find ρ(g) ≤ 2. We consider the following two cases:

Case 1. Suppose that 0 is not a Picard exceptional value of one of g and

g + a1 − a2. Without loss of generality, we suppose that 0 is not a Picard

exceptional value of one of g. Then, there exists some point ζ0 ∈ C such that

g(ζ0) = 0. Set

(3.34) H2 = {h̃n : n = 1, 2, 3, . . .},

where h̃n(ζ) = ρ−1
n gn(ζ) = ρ−1

n (fn(zn + ρnζ) − a1). In the same manner as in

the proof of Theorem 1.1 we can prove that H2 is not normal at ζ0. Combining

this with Lemma 2.1, we can find that there exist some sequence of points ζn
such that ζn → ζ0, some sequence of positive numbers ηn such that ηn → 0+

and some subsequence of functions h̃n ∈ H2 such that

(3.35) η−1
n h̃n(ζn + ηnξ) =

gn(ζn + ηnξ)

ρnηn
=: G̃n(ξ) → G̃(ξ)

spherical uniformly on compact subsets of C, where G̃ is some nonconstant

meromorphic function such that G̃#(ξ) ≤ G̃#(0) = A + 1, where A = |b1| +
|b2|+ |b3|+ 1. By Lemma 2.2 we have ρ(G̃) ≤ 2. In the same manner as in the

proof of Theorem 1.1 we can prove following claims:

(v) The number of zeros of G̃ in C is finite; (vi) EG̃({0}) = EG̃′
(S2).

We consider the following two subcases:

Subcase 1.1. Suppose that G̃, and so G̃′ is a transcendental meromorphic

function. Then, by the fact ρ(Ĝ) = ρ(Ĝ′) ≤ 2, the claims (v) and (vi), and the
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second fundamental theorem we have

2T (r, G̃′) ≤ N(r, G̃′) +

3
∑

j=1

N

(

r,
1

G̃′ − bj

)

+O(log r)

≤ 1

2
N(r, G̃′) +N

(

r,
1

G̃

)

+O(log r)

≤ 1

2
T (r, G̃′) + T

(

r,
1

G̃

)

+O(log r)

≤ 3

2
T (r, G̃′) +O(log r),

which implies that T (r, G̃′) = O(log r). Combining this with Lemma 2.7 we can

see that G̃′, and so G̃ is a rational function, which is impossible.

Subcase 1.2. Suppose that G̃ is a rational function. We consider the

following two subcases:

Subcase 1.2.1. Suppose that G̃ is a nonconstant polynomial with degree

d̃ ≥ 1. Then, by the claim (vi) we can find that d̃ ≥ 2. Combining this with

Lemma 2.3, the claims (v) and (vi) and the second fundamental theorem we

have

2(d̃− 1) log r = 2T (r, G̃′) +O(1)

≤ N(r, G̃′) +

3
∑

j=1

N

(

r,
1

G̃′ − bj

)

+O(1)

≤ N

(

r,
1

G̃

)

+O(1)

≤ d̃ log r +O(1),

which implies that d̃ ≤ 2. This together with d̃ ≥ 2 gives d̃ = 2. Therefore,

(G̃′ − b1)(G̃
′ − b2)(G̃

′ − b3) has at least three distinct zeros in the complex

plane. Combining this with the claim (vi), we can see that G̃ has at least three

distinct zeros in the complex plane, which contradicts deg(G̃) = 2. Next we

suppose that G̃ is a non-polynomial rational function. Then

(3.36) G̃(ξ) = dpξ
p + dp−1ξ

p−1 + · · ·+ d1ξ + d0 +
P5(ξ)

P6(ξ)
,

where dp, dq−1, . . . , d1, d0 are complex numbers and dp 6= 0, p ≥ 0 is an integer,

P5 and P6 are two relatively prime polynomials such that P5 6≡ 0 and that P6

is not a constant, and that deg(P5) < deg(P6). Set

(3.37) P6(ξ) = βq(ξ − η1)
r1(ξ − η2)

r2 · · · (ξ − ηq)
rq ,

where βq 6= 0 is a complex number, η1, η2, . . . , ηq are q distinct complex num-

bers, and r1, r2, . . . , rq are positive integers, q ≥ 1 is a positive integer. From
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(3.36), (3.37), Lemma 2.3, the claim (vi) and the second fundamental theorem

we deduce

2(p+ deg(P6)) log r ≤ 2T (r, G̃′) +O(1)

≤ N(r, G̃′) +

3
∑

j=1

N

(

r,
1

G̃′ − bj

)

+O(1)

≤ q log r +N

(

r,
1

G̃

)

+O(1)

≤ (p+ q + deg(P6)) log r +O(1),

which implies that p + deg(P6) = q, and so p = 0 and rj = 1 for 1 ≤ j ≤ q.

Therefore, by (3.36), Lemma 2.3 and the second fundamental theorem we have

2(q + deg(P6)) = 2T (r, G̃′) +O(1)

≤ N(r, G̃′) +

3
∑

j=1

N

(

r,
1

G̃′ − bj

)

+O(1)

≤ N(r, G̃′) +N

(

r,
1

G̃

)

+O(1)

≤ (q + deg(P6)) log r +O(1),

and so we have q + deg(P6) = 0, which contradicts the supposition deg(P6) ≥
q ≥ 1.

Case 2. Suppose that 0 is a Picard exceptional value of one of g and

g + a1 − a2. Then, in the same manner as in Case 2 in the proof of Theorem

1.2 we can get a contradiction.

Theorem 1.3 is thus completely proved. �
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