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INCLUSION AND NEIGHBORHOOD PROPERTIES OF

CERTAIN SUBCLASSES OF p-VALENT ANALYTIC

FUNCTIONS OF COMPLEX ORDER

INVOLVING A LINEAR OPERATOR

Ashok Kumar Sahoo and Jagannath Patel

Abstract. By making use of the familiar concept of neighborhoods of
analytic functions, we prove several inclusion relationships associated
with the (n, δ)-neighborhoods of certain subclasses of p-valent analytic
functions of complex order with missing coefficients, which are introduced
here by means of the Saitoh operator. Special cases of some of the results
obtained here are shown to yield known results.

1. Introduction

Let Ap(n) denote the class of functions of the form:

(1.1) f(z) = zp +

∞
∑

k=n

ap+kz
p+k (p, n ∈ N = {1, 2, . . .})

which are analytic and p-valent in the unit disk U = {z ∈ C : |z| < 1}. For
convenience, we write Ap(1) = Ap and A1(1) = A.

For functions f and g, analytic in U, we say that f is subordinate to g,

written as f ≺ g or f(z) ≺ g(z) (z ∈ U), if there exists a Schwarz function ω,

which (by definition) is analytic in U with ω(0) = 0, |ω(z)| < 1 and f(z) =

g(ω(z)), z ∈ U. Furthermore, if the function g is univalent in U, then we have

the following equivalence relation (cf., e.g., [14]; see also [15]):

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

For functions fj(z) =
∑∞

k=0
ak,jz

k (j = 1, 2) analytic in U, we define the

Hadamard product (or convolution) of f1 and f2 by

(f1 ⋆ f2)(z) =

∞
∑

k=0

ak,1ak,2z
k = (f2 ⋆ f1)(z) (z ∈ U).
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A function f ∈ Ap(n) is said to be p-valently starlike of complex order b and

type ρ, that is, f ∈ S∗
p,n(b, ρ), if it satisfies the inequality:

(1.2) Re

{

p+
1

b

(

zf ′(z)

f(z)
− p

)}

> ρ (b ∈ C
∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U).

Analogously, a function f ∈ Ap(n) is said to be p-valently convex of complex

order b and type ρ, that is, f ∈ Cp,n(b, ρ), if it satisfies the inequality:

(1.3)

Re

{

p+
1

b

(

1 +
zf ′′(z)

f ′(z)
− p

)}

> ρ (b ∈ C
∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U).

From (1.2) and (1.3), it follows that

f ∈ Cp,n(b, ρ) ⇐⇒ zf ′(z)

p
∈ S∗

p,n(b, ρ).

In particular, for p = n = 1, the classes S∗
p,n(b, ρ) and Cp,n(b, ρ) reduce to the

classes S∗(b, ρ) and C(b, ρ) of starlike functions of complex order b and type

ρ, and convex function of complex order b and type ρ (b ∈ C∗; 0 ≤ ρ < p),

respectively, which were introduced by Frasin [9].

Setting ρ = 0 in S∗(b, ρ) and C(b, ρ), we get the classes S∗(b) and C(b). These
classes of starlike and convex functions of order b were considered earlier by

Nasr and Aouf [17] and Wiatrowski [27], respectively (see also [8] and [26]). We

further observe that S∗
p,1(1, ρ) = S∗

p (ρ) and Cp,1(1, ρ) = Cp(ρ) are, respectively,
the classes of p-valently starlike and p-valently convex functions of order ρ (0 ≤
ρ < p) in U. Also, we note that S∗

1
(ρ) = S∗(ρ) and C1(ρ) = C(ρ) are the usual

classes of starlike and convex functions of order ρ (0 ≤ ρ < 1) in U. In the

special cases, S∗(0) = S∗ and C(0) = C are the familiar classes of starlike and

convex functions in U.

Furthermore, let Rp,n(b, ρ) denote the class of functions in Ap(n) satisfying

the condition:

Re

{

p+
1

b

(

f ′(z)

zp−1
− p

)}

> ρ (b ∈ C
∗ = C \ {0}, 0 ≤ ρ < p; z ∈ U).

We note that Rp,n(1, ρ) is a subclass of p-valently close-to-convex functions of

order ρ (0 ≤ ρ < p) in the unit disc U.

Let ϕp be the incomplete beta function defined by

(1.4) ϕp(a, c; z) = zp +

∞
∑

k=1

(a)k

(c)k
zp+k (z ∈ U),

where a ∈ R, c ∈ R \ Z
−
0
,Z−

0
= {0,−1,−2, . . .} and the symbol (x)k denotes

the Pochhammer symbol (or shifted factorial) given by

(x)k =

{

1, (k = 0, x ∈ C
∗ = C \ {0})

x(x+ 1) · · · (x+ k − 1), (k ∈ N, x ∈ C).
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With the aid of the function ϕp, given by (1.4) and the Hadamard product,

we consider the linear operator Lp(a, c) : Ap(n) −→ Ap(n) defined by

(1.5) Lp(a, c)f(z) = ϕp(a, c; z) ⋆ f(z) (z ∈ U).

If f is given by (1.1), then from (1.5), it readily follows that

(1.6) Lp(a, c)f(z) = zp +

∞
∑

k=n

(a)k

(c)k
ap+kz

p+k (z ∈ U).

The linear operator Lp(a, c) on the class Ap was studied by Saitoh [23], which

generalizes the linear operator L1(a, c) = L(a, c) introduced by Carlson and

Shaffer [7] in their systematic investigation of certain interesting classes of

starlike, convex and prestarlike hypergeometric functions.

It follows from (1.6) that

z (Lp(a, c)f)
′
(z) = aLp(a+1, c)f(z)−(a−p)Lp(a, c)f(z) (f ∈ Ap(n); z ∈ U).

We also note that for f ∈ Ap,

(i) Lp(a, a)f(z) = f(z);

(ii) Lp(p+ 1, p)f(z) =
zf ′

(z)

p
;

(iii) Lp(p+ 2, p)f(z) =
z2f ′′

(z)+2zf ′

(z)

p(p+1)
;

(iv) Lp(m+p, 1)f(z) = Dm+p−1f(z) (m ∈ Z, m > −p), the operator studied

by Goel and Sohi [10]. In the case p = 1, Dmf is the familiar Ruscheweyh

derivative [21] of f ∈ A.

(v) Lp(ν + p, 1)f(z) = Dν,pf(z) (ν > −p), an extended linear derivative

operator of Ruscheweyh type introduced by Raina and Srivastava [20]. In

particular, when ν = m, we get the operator Dm+p−1f(z) (m ∈ Z, m > −p).

(vi) Lp(p+ 1,m+ p)f(z) = Im,pf(z) (m ∈ Z, m > −p), the extended Noor

integral operator considered by Liu and Noor [13].

(vii) Lp(p+ 1, p+ 1− λ)f(z) = Ω
(λ,p)
z f(z) (−∞ < λ < p+ 1), the extended

fractional differintegral operator considered by Patel and Mishra [19]. Note

that

Ω(0,p)
z f(z) = f(z),Ω(1,p)

z f(z) =
zf ′(z)

p
and Ω(2,p)

z f(z) =
z2f ′′(z)

p(p− 1)
(p ≥ 2).

Now, by using the operator Lp(a, c), we introduce the following new sub-

classes of p-valent analytic functions in the unit disk U.

Definition 1. A function f ∈ Ap(n) is said to be in the class Sb
p,n(a, c, ρ), if

it satisfies the following inequality:

(1.7)

∣

∣

∣

∣

1

b

{

z (Lp(a, c)f)
′
(z)

Lp(a, c)f(z)
− p

}∣

∣

∣

∣

< p− ρ (b ∈ C
∗, 0 ≤ ρ < p; z ∈ U).
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Using the definition of subordination, it is easily seen that (1.7) is equivalent

to the following subordination condition:

z (Lp(a, c)f)
′
(z)

Lp(a, c)f(z)
≺ p+ b(p− ρ)z (b ∈ C

∗, 0 ≤ ρ < p; z ∈ U).

Definition 2. A function f ∈ Ap(n) is said to be in the class Rb
p,n(a, c, µ, ρ),

if it satisfies the following inequality:

(1.8)

∣

∣

∣

∣

1

b

{

p(1− µ)
Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)
′
(z)

zp−1
− p

}∣

∣

∣

∣

< p− ρ

(b ∈ C
∗, 0 ≤ µ ≤ 1, 0 ≤ ρ < p; z ∈ U).

Analogously, (1.8) is equivalent to the following subordination condition:
{

p(1− µ)
Lp(a, c)f(z)

zp
+ µ

(Lp(a, c)f)
′
(z)

zp−1

}

≺ p+ b(p− ρ)z

(b ∈ C
∗, 0 ≤ µ ≤ 1, 0 ≤ ρ < p; z ∈ U).

It may be noted that for suitable choices of the parameters involved in Def-

inition 1 and Definition 2, the classes Sb
p,n(a, c, ρ) and Rb

p,n(a, c, λ, ρ) extend

several subclasses of p-valent analytic functions in the unit disc U. For instance,

Example 1.

Sb
p,n(p+ 1, p+ 1− λ, ρ)

= Sb
p,n(λ, ρ) (b ∈ C

∗,−∞ < λ < p+ 1, 0 ≤ ρ < p)

=

{

f ∈ Ap(n) :

∣

∣

∣

∣

∣

1

b

(

z(Ω
(λ,p)
z f(z))′

Ω
(λ,p)
z f(z)

− p

)
∣

∣

∣

∣

∣

< p− ρ, z ∈ U

}

,

which reduces to the class Kn(p, λ, b, β) (b ∈ C∗, 0 ≤ λ ≤ 1, 0 < β ≤ 1) studied

by Aouf [3] for ρ = p− β, the class

Sb
p,n(ρ)=

{

f ∈ Ap(n) :

∣

∣

∣

∣

1

b

(

zf ′(z)

f(z)
− p

)∣

∣

∣

∣

< p− ρ, b ∈ C
∗, 0 ≤ ρ < p; z ∈ U

}

for λ = 0 and the class

Cb
p,n(ρ)=

{

f ∈ Ap :

∣

∣

∣

∣

1

b

(

1+
zf ′′(z)

f ′(z)
−p

)∣

∣

∣

∣

< p− ρ, b ∈ C
∗, 0 ≤ ρ < p; z ∈ U

}

for λ = 1. The classes Sb
p,n(ρ) and Cb

p,n(ρ) are the subclasses of p-valently

starlike and p-valently convex functions of complex order b and type ρ (b ∈
C∗, 0 ≤ ρ < p) in U.

Example 2.

Rb
p,n(p+ 1, p+ 1− λ, µ, ρ)

= Rb
p,n(λ, µ, ρ) (b ∈ C

∗, −∞ < λ < p, 0 ≤ µ, 0 ≤ ρ < p)
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=

{

f ∈ Ap(n) :

∣

∣

∣

∣

∣

(

(p(1− µ) + µλ)
Ω

(λ,p)
z f(z)

zp
+ µ(p− λ)

Ω
(1+λ,p)
z f(z)

zp
− p

)∣

∣

∣

∣

∣

< p− ρ; z ∈ U

}

=

{

f ∈ Ap(n) :

∣

∣

∣

∣

∣

1

b

(

p(1− µ)
Ω

(λ,p)
z f(z)

zp
+ µ

(Ω
(λ,p)
z f)′(z)

zp
− p

)
∣

∣

∣

∣

∣

< p− ρ; z ∈ U

}

,

which yields the class considered by Aouf [3] for ρ = p− β (0 < β ≤ 1).

Special cases of the parameters p, λ and ρ in the class Rb
p,n(λ, µ, ρ) yields

(i)

Rb
p,n(0, µ, ρ) = Rb

p,n(µ, ρ)

=

{

f ∈ Ap :

∣

∣

∣

∣

1

b

(

p(1− µ)
f(z)

zp
+ µ

f ′(z)

zp−1
− p

)∣

∣

∣

∣

< p− ρ, µ ≥ 0, 0 ≤ ρ < p; z ∈ U

}

.

(ii)

Rb
p,n(1, µ, ρ) = Pb

p,n(µ, ρ)

=

{

f ∈ Ap :

∣

∣

∣

∣

1

b

(

(µ+ µ(1 − p))
f ′(z)

pzp−1
+ µ

f ′′(z)

pzp−2
− p

)∣

∣

∣

∣

< p− ρ, µ ≥ 0, 0 ≤ ρ < p; z ∈ U

}

.

(iii)

Rb
1,n(1, µ, 1− β) = Rb

n(µ, β)

=

{

f ∈ Ap :

∣

∣

∣

∣

1

b
(f ′(z) + µzf ′′(z)− 1)

∣

∣

∣

∣

< β, µ ≥ 0, 0 < β ≤ 1; z ∈ U

}

.

The class Rb
n(µ, β) was studied by Altintas et al. [6].

Let Tp(n) be the subclass of Ap(n) consisting of functions of the form:

(1.9) f(z) = zp −
∞
∑

k=n

ap+kz
p+k (ap+k ≥ 0; p, n ∈ N).

We write T1(1) = T .

We denote by ˜Sb
p,n(a, c, ρ),

˜Rb
p,n(a, c, µ, ρ),

˜Sb
p,n(ρ) and

˜Cb
p,n(ρ), respectively,

the classes obtained by taking the intersections of Sb
p,n(a, c, ρ), Rb

p,n(a, c, µ, ρ),

Sb
p,n(ρ) and Cb

p,n(ρ) with Tp(n). We also observe that

˜S1

1,1(ρ) =
˜S(ρ) and ˜C1

1,1(ρ) =
˜C(ρ) (0 ≤ ρ < 1)

are the subclasses of T studied by Silverman [24].

Various further subclasses of ˜Sb
p,n(a, c, ρ) and

˜Rb
p,n(a, c, µ, ρ) were studied in

many earlier works (cf., e.g., [5], [6], [16], [20] and [25]; see also the references

cited in these earlier works).

The object of the present paper is to investigate various properties and char-

acteristics of functions belonging to the subclasses ˜Sb
p,n(a, c, ρ) and ˜Rb

p,n(a, c,

µ, ρ), which are introduced here by means of the Saitoh operator. Apart from

deriving a set of coefficient inequalities, we establish several inclusion relation-

ships associated with the (n, δ)-neighborhoods of functions belonging to these
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subclasses of p-valent analytic functions (with missing coefficients) of complex

order. Relevant connections of the results obtained here with some earlier

investigations are also pointed out.

2. Preliminaries

To prove our main results, we need the following definition and lemmas.

Definition 3. A sequence {ck}∞k=1
of complex numbers is said to be a subor-

dinating factor sequence, if for any g(z) = z +
∑∞

k=2
dkz

k ∈ C
∞
∑

k=1

ckdkz
k ≺ g(z) (d1 = 1; z ∈ U).

Wilf [28] established the following criterion for a sequence of complex num-

bers to be a subordinating factor sequence.

Lemma 1. A sequence {ck}∞k=1
of complex numbers is said to be a subordinat-

ing factor sequence if and only if

(2.1) Re

{

1 + 2

∞
∑

k=1

ckz
k

}

> 0 (z ∈ U).

We give a necessary and sufficient condition for a function in Tp(n) to be in

the class ˜Sb
p,n(a, c, ρ).

Lemma 2. Let the function f be given by (1.9). Then f ∈ ˜Sb
p,n(a, c, ρ) if and

only if

(2.2)

∞
∑

k=n

k + (p− ρ)|b|
(p− ρ)|b|

|(a)k|
|(c)k|

ap+k ≤ 1.

The result in (2.2) is sharp.

Proof. Suppose f, given by (1.9) belongs to the class ˜Sb
p,n(a, c, ρ). Then from

(1.7), it follows that

Re

{

z (Lp(a, c)f)
′
(z)

Lp(a, c)f(z)
− p

}

> −(p− ρ)|b| (0 ≤ ρ < p; z ∈ U),

and by using the series expansion of Lp(a, c)f(z) (c.f., Eqn.(1.6)) in the above

expression, we obtain

(2.3) Re























−
∞
∑

k=n

k
(a)k

(c)k
ap+kz

k

1−
∞
∑

k=n

(a)k

(c)k
ap+kz

k























> −(p− ρ)|b| (z ∈ U).

Setting |z| = r(0 ≤ r < 1) in (2.3) and noting the fact that for r = 0, the

resulting expression in the denominator is positive, and remains so for all r ∈
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(0, 1), the desired inequality (2.2) follows upon letting r → 1− through real

values.

To prove the converse, we let |z| = 1. Then by using (1.6), we find that

(2.4)

∣

∣

∣

∣

{

z (Lp(a, c)f)
′
(z)

Lp(a, c)f(z)
− p

}∣

∣

∣

∣

=























−
∞
∑

k=n

k
(a)k

(c)k
ap+kz

k

1−
∞
∑

k=n

(a)k

(c)k
ap+kz

k























≤























∞
∑

k=n

k
|(a)k|
|(c)k|

ap+k

1−
∞
∑

k=n

|(a)k|
|(c)k|

ap+k























(z ∈ U).

The expression in (2.4) is bounded by (p− ρ)|b|, provided

∞
∑

k=n

k |(a)k|
|(c)k|

ap+k ≤ (p− ρ)|b|
(

1−
∞
∑

k=n

|(a)k|
|(c)k|

ap+k

)

which is certainly true by using the maximum modulus theorem and the as-

sertion (2.2). Thus, in view of (1.7), we deduce that f ∈ ˜Sb
p,n(a, c, ρ), which

evidently completes the proof of Lemma 2. �

The result in (2.2) is sharp for the functions

fk(z) = zp − (p− ρ)|b||(c)k|
k + (p− ρ)|b||(a)k|

zp+k (k ≥ n, a, c ∈ R \ Z−
0
; z ∈ U).

Remark 1. (i) A special case of Lemma 2 when a = λ + 1 (λ > −1) and

p = n = b = c = 1 was given earlier by Ahuja [1]. Further, if in Lemma 2 with

a = 2, n = p = b = 1, we set c = 2 and c = 1, we shall obtain the familiar

results of Silverman [24].

(ii) Putting a = p+1, c = p+1−λ (−∞ < λ < p+1) and ρ = (p− β) (0 <

β ≤ 1) in Lemma 2, we get the result obtained by Aouf [3, Lemma 1]. Also, in

Lemma 2 with a = p+ 1, n = b = 1, if we set c = p+ 1 and c = p, we obtain

the results of Owa [18].

(iii) Setting a = λ + 1 (λ > −1), c = p = 1 and ρ = 1 − β (0 < β ≤ 1) in

Lemma 2, we get the result obtained by Murugusundarmoorthy and Srivastava

[16].

Our proof of Lemma 3 given below is much akin to that of Lemma 2, so we

omit the details.
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Lemma 3. Let the function f be defined by (1.9). Then f ∈ ˜Rb
p,n(a, c, µ, ρ), if

and only if

(2.5)

∞
∑

k=n

(p+ µk)

(p− ρ)|b|
|(a)k|
|(c)k|

ap+k ≤ 1.

The result in (2.5) is sharp for the functions

fk(z) = zp − (p− ρ)|b||(c)k|
(p+ µk)|(a)k|

zp+k (k ≥ n, a, c ∈ R \ Z−
0
; z ∈ U).

Remark 2. (i) If in Lemma 3 with a = p+ 1, b = n = 1, we set c = p+ 1 and

c = p, our result corresponds to the work of Lee et al. [11, Lemma 2] and Aouf

[2, Theorem 1], respectively.

(ii) Putting a = λ+1, c = p = 1 and ρ = 1−β (0 < β ≤ 1) in Lemma 3, we

get the result due to Murugusundarmoorthy and Srivastava [15, Lemma 2].

(iii) As a special case of Lemma 3 when a = p+1, c = p+1−λ (−∞ < λ < p)

and ρ = p(1 − β) (0 < β ≤ 1), we get the corresponding result obtained by

Aouf [3, Lemma 2].

3. Inclusion relationships involving the classes ˜Sb
p,n(a, c, ρ) and

˜R
b
p,n(a, c, µ, ρ)

Unless otherwise mentioned, we assume throughout the sequel that

b ∈ C
∗ = C \ {0}, a, c > 0, µ ≥ 0 and 0 ≤ ρ < p.

We first prove:

Theorem 1. If

κ = p− a(p− ρ)

(a+ n) + (p− ρ)|b| ,

then

˜Sb
p,n(a+ 1, c, ρ) ⊂ ˜Sb

p,n(a, c,κ).

The result is the best possible.

Proof. Let the function f , given by (1.9) be in the class ˜Sb
p,n(a+1, c, ρ). Then

by using (2.2), we obtain

(3.1)

∞
∑

k=n

k + (p− ρ)|b|
(p− ρ)|b|

(a+ 1)k

(c)k
ap+k ≤ 1.

To show that f ∈ ˜Sb
p,n(a, c,κ), in view of (3.1), we need to find the best possible

value of κ such that

k + (p− κ)|b|
(p− κ)|b|

(a)k

(c)k
≤ k + (p− ρ)|b|

(p− ρ)|b|
(a+ 1)k

(c)k
(k ≥ n)
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which is equivalent to

(3.2) κ ≤ p− a(p− ρ)

a+ k + (p− ρ)|b| (k ≥ n).

Since the right hand side of (3.2) is increases with k, letting k = n in (3.2), we

get the required result. �

It is easily seen that the result is the best possible for the function

(3.3) f(z) = zp − (p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a+ 1)n

zp+n (z ∈ U).

Setting a = c = p in Theorem 1, we get the following result which yields the

corresponding work of Silverman [24, Theorem 7] for p = n = b = 1.

Corollary 1. We have

˜Cb
p,n(ρ) ⊂ ˜Sb

p,n(κ),

where

κ =
p(n+ ρ+ (p− ρ)|b|)
p+ n+ (p− ρ)|b| .

The result is the best possible.

Similarly, we can prove the following result.

Theorem 2. If

ξ = p− a(p− ρ)

a+ n
,

then

˜Rb
p,n(a+ 1, c, µ, ρ) ⊂ ˜Rb

p,n(a, c, µ, ξ).

The result is the best possible for the function

f(z) = zp − (p− ρ)|b|(c)n
(p+ µn)(a+ 1)n

zp+n (z ∈ U).

For λ > −p, we define a linear operator Fλ,p : Ap(n) −→ Ap(n) by

(3.4) Fλ,p(f)(z) =
p+ λ

zλ

∫ z

0

tλ−1f(t)dt (f ∈ Ap(n); z ∈ U).

If f is given by (1.9), then it follows from (3.4) that

(3.5) Fλ,p(f)(z) = zp −
∞
∑

k=n

p+ λ

p+ k + λ
ap+kz

p+k (λ > −p; z ∈ U).

Now, by employing the techniques that proved Theorem 1 and using (3.5), it

can be shown that:
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Theorem 3. For f ∈ Ap(n), if Fλ,p(f) is given by (3.4) and

τ = p− a(p+ λ)(p− ρ)

a(p+ λ) + (a+ n+ p+ λ)(n+ (p− ρ)|b|) ,

then

Fλ,p

(

˜Sb
p,n(a+ 1, c, ρ)

)

∈ ˜Sb
p,n(a, c, τ).

The result is the best possible for the function f given by (3.3).

4. Inclusion relationships involving neighborhoods

Following the earlier investigations by Goodman [11], Ruscheweyh [22] and

others including Altintas and Owa [4], Altintas et al. ([5] and [6]), we first define

the (n, δ)-neighborhood of a function f ∈ Ap(n), given by (1.1) as follows:

Tn,δ(f) =

{

g ∈ Ap(n) : g(z) = zp +

∞
∑

k=n

bp+kz
p+k and

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)n

|bp+k − ap+k| ≤ δ; δ > 0

}

,(4.1)

Nn,δ(f) =

{

g ∈ Ap(n) : g(z) = zp +

∞
∑

k=n

bp+kz
p+k and

∞
∑

k=n

(p+ k) |bp+k − ap+k| ≤ δ; δ > 0

}

.(4.2)

In particular, for the identity function e(z) = zp (p ∈ N; z ∈ U), we immediately

have

Nn,δ(e) =

{

g ∈ Ap(n) : g(z) = zp +

∞
∑

k=n

bp+kz
p+k and

∞
∑

k=n

(p+ k)|bp+k| ≤ δ; δ > 0

}

.(4.3)

Throughout this presentation, we shall make use of the following simplified

notations:

T+

n,δ(f)=Tn,δ(f)∩Tp(n), N
+

n,δ(f)=Nn,δ(f)∩Tp(n) andN+

n,δ(e)=Nn,δ(e)∩Tp(n).

To establish our results, we need the following lemma.
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Lemma 4. Let the function f ∈ Ap(n) be given by (1.1). Then f ∈ Sb
p,n(a, c, ρ)

if and only if

(4.4)

Lp(a, c)f(z)

zp
⋆















1− (1 + (p− ρ)b x)z

(p− ρ)b x

(1 − z)2















6= 0 (|x| = 1, x 6= 1; 0 < |z| < 1).

Proof. From (1.7), it follows that

(4.5) f ∈ Sb
p,n(a, c, ρ) ⇐⇒ z (Lp(a, c)f)

′
(z)

Lp(a, c)f(z)
6= p+ (p− ρ)b x

for all z ∈ U with |x| = 1 and x 6= 1. Since z (Lp(a, c)f)
′
(z)/Lp(a, c)f(z) takes

the value p at z = 0, (4.5) is equivalent to

Lp(a, c)f(z) ⋆

{

(p− 1)zp

1− z
+

zp

(1− z)2

}

− (p+ (p− ρ)b x)Lp(a, c)f(z) 6= 0

(0 < |z| < 1)

or, equivalently

Lp(a, c)f(z)

zp
⋆

{

p− (p− 1)z

(1− z)2
− p+ (p− ρ)b x

1− z

}

6= 0 (0 < |z| < 1),

which reduces to our assertion (4.4). The converse part follows easily by re-

tracing back the steps that proved (4.4). This completes the proof of Lemma

4. �

Theorem 4. If the function f ∈ Ap(n) satisfy

(4.6)
f(z) + εzp

1 + ε
∈ Sb

p,n(a, c, ρ) (ε ∈ C, |ε| < δ; δ > 0),

then

Tn,δ(f) ⊂ Sb
p,n(a, c, ρ).

Proof. In view of Lemma 4, we note that a function g ∈ Sb
p,n(a, c, ρ) if and only

if

(4.7)
(g ⋆ h)(z)

zp
6= 0 (z ∈ U),

where for convenience

h(z)=zp+

∞
∑

k=1

cp+kz
p+k with cp+k=−k−(p−ρ)b x(a)k

(p−ρ)b x(c)k
(|x|=1, x 6= 1, k ≥ 1).

It is easily seen that

|cp+k| ≤
(k + (p− ρ)|b|)(a)k

(p− ρ)|b|(c)k
(k ≥ 1).
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Using (4.6) and (4.7), we deduce that

f(z) + εzp

1 + ε
∗ h(z)

zp
6= 0 (z ∈ U)

or, (f ⋆ h)(z)/zp 6= −ε, which is equivalent to

(4.8)

∣

∣

∣

∣

(f ∗ h)(z)
zp

∣

∣

∣

∣

≥ δ (δ > 0; z ∈ U).

Let g(z) = zp +
∑∞

k=n bp+kz
p+k ∈ Tn,δ(f). Then

∣

∣

∣

∣

((g − f) ⋆ h)(z)

zp

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=n

(bp+k − ap+k)cp+kz
k

∣

∣

∣

∣

∣

≤ |z|k
∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

|bp+k − ap+k| ≤ δ (z ∈ U).(4.9)

Now, with the aid of (4.8) and (4.9), we obtain
∣

∣

∣

∣

(g ∗ h)(z)
zp

∣

∣

∣

∣

≥
∣

∣

∣

∣

(f ⋆ h)(z)

zp

∣

∣

∣

∣

−
∣

∣

∣

∣

((g − f) ⋆ h)(z)

zp

∣

∣

∣

∣

> 0 (z ∈ U),

which in view of (4.7) implies that g ∈ Sb
p,n(a, c, ρ) and the proof of Theorem

4 is thus completed. �

Theorem 5. If f ∈ ˜Sb
p,n(a+ 1, c, ρ) and δ1 = n/(a+ n), then

T+

n,δ1
(f) ⊂ ˜Sb

p,n(a, c, ρ).

The result is the best possible in the sense that δ1 cannot be increased.

Proof. Let f , given by (1.9) be in the class ˜Sb
p,n(a+ 1, c, ρ). Then by (2.2), we

have
∞
∑

k=n

k + (p− ρ)|b|
(p− ρ)|b|

(a+ 1)k

(c)k
ap+k ≤ 1

so that

(4.10)

∞
∑

k=n

k + (p− ρ)|b|
(p− ρ)|b|

(a)k

(c)k
ap+k ≤ a

a+ n
.

Assuming that the function g ∈ Tp(n) defined in U by

(4.11) g(z) = zp −
∞
∑

k=n

bp+kz
p+k (z ∈ U)

is in the set T+

n,δ1
(f), we deduce from (4.1) that

(4.12)

∞
∑

k=n

(k + (p− α)|b|)(a)k
(p− ρ)|b|(c)k

|bp+k − ap+k| ≤ δ1.
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Now, with the aid of (4.10) and (4.12), we obtain

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

bp+k

≤
∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

|bp+k − ap+k|+
∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

ap+k

≤ a

a+ n
+ δ1 = 1,

which shows that g ∈ ˜Sb
p,n(a, c, ρ).

To see that the result is the best possible, we consider the function f , given

by (3.3) and the function g defined by

g(z) = zp −
[

(p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a+ 1)n

+
(p− ρ)|b|(c)nδ′

(n+ (p− ρ)|b|)(a)n

]

zp+n

(δ′ > δ1; z ∈ U).

It is easily seen that f ∈ ˜Sb
p,n(a + 1, c, ρ), g ∈ T+

n,δ′(f), but g /∈ ˜Sb
p,n(a, c, ρ).

This completes the proof of Theorem 5. �

Theorem 6. Let f ∈ ˜Sb
p,n(a+ 1, c, ρ) and Fλ,p(f) be given by (3.4). If

δ2 =
n(n+ a+ p+ λ)

a(p+ λ) + n(n+ a+ p+ λ)
,

then

T+

n,δ2
(Fλ,p(f)) ⊂ ˜Sb

p,n(a, c, ρ).

The result is the best possible in the sense that δ2 cannot be increased.

Proof. Let the function f be given by (1.9). Then by using Lemma 2 and

Theorem 3, we get

∞
∑

k=n

(k + (p− τ)|b|)(a)k
(p− τ)|b|(c)k

p+ λ

p+ k + λ
ap+k ≤ 1

from which it follows that

(4.13)

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

p+ λ

p+ k + λ
ap+k ≤ (p− τ)(n + (p− ρ)|b|)

(p− ρ)(n+ (p− ρ)|b|) .

Suppose the function g, given by (4.11) belongs to the set T+

n,δ2
(Fλ,p(f)). Then

by using (3.5) and (4.1), we deduce that

(4.14)

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

∣

∣

∣

∣

bp+k −
p+ λ

p+ λ+ k
ap+k

∣

∣

∣

∣

≤ δ2.



1638 ASHOK KUMAR SAHOO AND JAGANNATH PATEL

Thus, in view of (4.13) and (4.14), we obtain

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

bp+k

≤
∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

p+ λ

p+ k + λ
ap+k

+

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

∣

∣

∣

∣

bp+k −
p+ λ

p+ λ+ k
ap+k

∣

∣

∣

∣

≤ (p− τ)(n + (p− ρ)|b|)
(p− ρ)(n+ (p− τ)|b|) + δ2 = 1.

To show that the result is the best possible, we consider the function f , given

by (3.3) and the function g defined by

g(z) = zp − (p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

(

a(p+ λ)

(a+ n)(n+ p+ λ)
+ δ′

)

zp+n

(δ′ > δ2; z ∈ U).

It is easily seen that f ∈ ˜Sb
p,n(a + 1, c, ρ) and g ∈ T+

n,δ′(Fp,λ(f)), but g /∈
˜Sb
p,n(a, c, ρ). This proves the assertion of Theorem 6. �

Theorem 7. If a ≥ c > 0, |b| < p/(p− ρ) and

δ3 =
(p+ n)(p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

,

then
˜Sb
p,n(a, c, ρ) ⊂ N+

n,δ3
(e).

Proof. For a function f ∈ ˜Sb
p,n(a, c, ρ) of the form (1.9), the assertion (2.2)

immediately yields

(n+ (p− ρ)|b|)(a)n
(c)n

∞
∑

k=n

ap+k ≤ (p− ρ)|b|,

so that

(4.15)

∞
∑

k=n

ap+k ≤ (p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

.

Making use of (2.2) again, in conjunction with (4.15) and the fact that |b| <
p/(p− ρ), we get

(a)n

(c)n

∞
∑

k=n

(p+ k)ap+k ≤ (p− ρ)|b|+ (p− (p− ρ)|b|) (a)n
(c)n

∞
∑

k=n

ap+k

≤ (p− ρ)|b|+ (p− (p− ρ)|b|) (a)n
(c)n

(p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n
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=
(n+ p)|b|

n+ (p− ρ)|b|
that is,

∞
∑

k=n

(p+ k)ap+k ≤ (n+ p)(p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

= δ3,

which, in view of (4.3) establishes the inclusion relation asserted by Theorem

7. �

Remark 3. (i) As a special case of Theorem 7 when p = b = 1, a = c and

p = b = c = 1, a = 2, respectively, we get the results due to Altintaş and Owa

[4, Theorem 2.1 and Theorem 2.2].

(ii) For a = λ+1(λ > −1), c = p = 1 and ρ = 1−β (0 < β ≤ 1), Theorem 7

corresponds to a result of Murugusundaramoorthy and Srivastava [16, Theorem

1].

(iii) A result due to Aouf [3, Theorem 1] can deduced from Theorem 7 by

taking a = p + 1, c = p + 1 − λ (0 ≤ λ ≤ 1) and ρ = p − β (0 < β ≤ 1),

which in turn yields the corresponding work of Altintaş et al. [5, Theorem 1

and Theorem 2] for p = 1, a = c, ρ = β (0 < β ≤ 1) and a = 2, p = c = 1,

a = c, ρ = β (0 < β ≤ 1), respectively.

In an analogous manner, by applying the assertion (2.5) of Lemma 3 instead

of the assertion (2.2) of Lemma 2 to the functions of the class ˜Rb
p,n(a, c, µ, ρ),

we can prove the following inclusion relationship, which in turn yields the

corresponding result obtained by Murugusundaramoorthy and Srivastava [16,

Theorem 2] for a = λ + 1 (λ > −1), c = p = 1 and ρ = 1 − β (0 < β ≤ 1). A

result due to Aouf [3, Theorem 2] can also be deduced by setting a = p + 1,

c = p+ 1− λ (0 ≤ λ ≤ 1) and ρ = β (0 < β ≤ 1).

Theorem 8. If a ≥ c > 0, µ > 1, |b| < p/(p− ρ) and

δ4 =
(p+ n)(p− ρ)|b|(c)n

(p+ µn)(a)n
,

then
˜Rb
p,n(a, c, µ, ρ) ⊂ Nn,δ4(e).

For function f , given by (1.9) and g defined by (4.11), we define the modified

Hadamard (or quasi-Hadamard) product of f and g by

(f ⋆q g)(z) = zp −
∞
∑

k=n

ap+kbp+kz
p+k = (g ⋆q f)(z) (p, n ∈ N; z ∈ U).

Using the notion of modified Hadamard product, for subsets E1 and E2 of

Tp(n), we denote

E1 ⊗ E2 = {f ⋆q g : f ∈ E1 and g ∈ E2} .
We now prove:
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Theorem 9. If a ≥ c > 0 and e(z) = zp, then

(i) T+

n,δ5
(e)⊗ T+

n,δ5
(e) ⊂ ˜Sb

p,n(a, c, ρ), where

δ5 =
√

{(n+ (p− ρ)|b|)(a)n}/{(p− ρ)|b|(c)n}.
(ii) T+

n,δ6
(e)⊗N+

n,δ6
(e) ⊂ ˜Sb

p,n(a, c, ρ), where δ6 =
√
p+ n.

The result, in each case is the best possible.

Proof. Let the function f be given by (1.9) and the function g be defined by

(4.11). Suppose that f, g ∈ T+

n,δ5
(e). Then by (4.1), we have

(4.16)
∞
∑

k=n

(k + (p− α)|b|)(a)k
(p− ρ)|b|(c)k

ap+k ≤ δ5 and

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

bp+k ≤ δ5.

For a ≥ c > 0, we note that {(k+(p−ρ)|b|)(a)k}/(c)k is an increasing function

of k (k ≥ n) so that the first estimate in (4.16) immediately yields

∞
∑

k=n

ap+k ≤ (p− ρ)|b|(c)nδ5
(n+ (p− ρ)|b|)(a)n

which implies that

(4.17) ap+k ≤ (p− ρ)|b|(c)nδ5
(n+ (p− ρ)|b|)(a)n

(k ≥ n).

Using (4.17) and the second estimate in (4.16), we get

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|)(c)k

ap+kbp+k ≤ (p− ρ)|b|(c)nδ25
(n+ (p− ρ)|b|)(a)n

= 1,

which again in view of the assertion (2.2) implies that (f ⋆q g) ∈ ˜Sb
p,n(a, c, ρ).

To see that the result in part (i) is the best possible, we consider the functions

f and g defined by

f(z) = g(z) = zp −
√

(p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

zp+n (a ≥ c > 0; z ∈ U).

Clearly, f, g ∈ T+

n,δ5
(e) and (f ⋆q g) ∈ ˜Sb

p,n(a, c, ρ). This proves part (i) of the

theorem.

To prove part (ii), we assume that f ∈ T+

n,δ6
(e) and g ∈ N+

n,δ6
(e). Then

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

ap+k ≤ δ6 and

∞
∑

k=n

(p+ k)bp+k ≤ δ6.

Thus, bp+k ≤ δ6/(p+ n) for k ≥ n and

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

ap+kbp+k ≤ δ2
6

p+ n
= 1,

which in view of (2.2) implies that (f ⋆q g) ∈ ˜Sb
p,n(a, c, ρ).
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Considering the functions f, g defined in U by

f(z) = zp− (p− ρ)|b|√p+ n(c)n

(n+ (p− ρ)|b|)(a)n
zp+n (a ≥ c > 0) and g(z) = zp− zp+n

√
p+ n

,

it is easily seen that f ∈ T+

n,δ6
(e), g ∈ N+

n,δ6
(e) and (f ⋆q g) ∈ ˜Sb

p,n(a, c, ρ) and

the result in part (ii) is the best possible. This completes the proof of Theorem

9. �

Putting a = c in Theorem 9, we have:

Corollary 2. Let the function f be given by (1.9) and the function g be defined

by (4.11). If

(i)
∑∞

k=n(k + (p − ρ)|b|)ap+k ≤
√

(p− ρ)(n+ (p− ρ)|b|)|b| and ∑∞
k=n(k +

(p− ρ)|b|)bp+k ≤
√

(p− ρ)(n+ (p− ρ)|b|)|b|, then (f ⋆q g) ∈ ˜Sb
p,n(ρ).

(ii)
∑∞

k=n(k + (p − ρ)|b|)ap+k ≤ (p − ρ)|b|√p+ n and
∑∞

k=n(p + k)bp+k ≤√
p+ n, then (f ⋆q g) ∈ ˜Sb

p,n(ρ). The result in (i) and (ii) are the best possible.

Next, we determine the neighborhood for each of the classes

˜Sb
p,n(a, c, ρ; η),

˜Rb
p,n(a, c, µ, ρ; η) and ˜Kb

p,n(a, c, ρ;κ)

which we define as follows:

A function f ∈ Tp(n) is said to be in the class ˜Sb
p,n(a, c, ρ; η), if there exists

a function g ∈ ˜Sb
p,n(a, c, ρ) such that

(4.18)

∣

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣

∣

< η (0 < η ≤ 1; z ∈ U).

Analogously, a function f ∈ Tp(n) is said to be in the class ˜Rb
p,n(a, c, µ, ρ; η),

if there exists a function g ∈ ˜Rb
p,n(a, c, µ, ρ) such that the inequality (4.18)

holds true.

Furthermore, a function f ∈ Tp(n) is said to be in the class ˜Kb
p,n(a, c, ρ;κ),

if there exists a function g ∈ ˜Sb
p,n(a+ 1, c, ρ) such that

Re

{

f ′(z)

g′(z)

}

> ̺ (0 ≤ ̺ < 1; z ∈ U).

Theorem 10. If a ≥ c > 0, g ∈ ˜Sb
p,n(a, c, ρ) and

δ7 =
(p+ n) η{(n+ (p− ρ)|b|)(a)n − (p− ρ)|b|(c)n}

(n+ (p− ρ)|b|)(a)n
,

then

N+

n,δ7
(g) ⊂ ˜Sb

p,n(a, c, ρ; η).
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Proof. Suppose f , given by (1.9) belongs to the set N+

n,δ7
(g), where g, given by

(4.11) satisfy the condition (4.18). Then

∞
∑

k=n

(p+ k)|ap+k − bp+k| ≤ δ7,

which readily implies that
∞
∑

k=n

|ap+k − bp+k| ≤
δ7

p+ n
.

Since g ∈ ˜Sb
p,n(a, c, ρ), we have from Lemma 2

∞
∑

k=n

bp+k ≤ (p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

so that
∣

∣

∣

∣

f(z)

g(z)
− 1

∣

∣

∣

∣

<

∑∞
k=n |ap+k − bp+k|
1−∑∞

k=n bp+k

≤ (n+ (p− ρ)|b|)(a)nδ7
(p+ n){(n+ (p− ρ)|b|(a)n − (p− ρ)|b|(c)n}

= η (z ∈ U).

Thus in view of (4.17), f ∈ ˜Sb
p,n(a, c, ρ; η) and the proof of Theorem 10 is

completed. �

Our proof of Theorem 11 given below is much akin to that of Theorem 10,

and we omit the details.

Theorem 11. If a ≥ c > 0, g ∈ ˜Rb
p,n(a, c, µ, ρ) and

δ8 =
(p+ n)η{(p+ µn)(a)n − (p− ρ)|b|(c)n}

(p+ µn)(a)n
,

then

N+

n,δ8
(g) ⊂ ˜Rb

p,n(a, c, µ, ρ; η).

Theorem 12. If a ≥ c > 0, |b| < p/(p− ρ) and

δ9 = p(1− ̺) +
̺(p+ n)(p− ρ)|b|(c)n

{n+ (p− ρ)|b|}(a+ 1)n
,

then
˜Kb
p,n(a, c, ρ; ̺) ⊂ Nn,δ9(e).

Proof. Suppose that the function f , given by (1.9) belongs to the class
˜Kb
p,n(a, c, ρ;κ) and the function g ∈ ˜Sb

p,n(a + 1, c, ρ) is given by (4.11). Then,

we have

Re

{

f ′(z)

g′(z)

}

= Re

{

p−∑∞
k=n(p+ k)ap+kz

k+1

p−∑∞
k=n(p+ k)bp+kzk+1

}
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≥ p−∑∞
k=n(p+ k)ap+k

p−∑∞
k=n(p+ k)bp+k

> ̺,

which implies that

(4.19)

∞
∑

k=n

(p+ k)ap+k ≤ p(1 − ̺) + κ

∞
∑

k=n

(p+ k)bp+k.

Since a ≥ c > 0 and the function g ∈ ˜Sb
p,n(a+ 1, c, ρ), Lemma 2 implies that

∞
∑

k=n

(p+ k)bp+k ≤ (p+ n)(p− ρ)|b|(c)n
{n+ (p− ρ)|b|}(a+ 1)n

.

Thus, by using the above inequality in (4.19), we get the required result. �

Remark 4. (i) Letting a = c = p = b = 1 in Theorem 10 and Theorem 12, we

get the corresponding results obtained by Altintas and Owa [4].

(i) Setting a = λ + 1 (λ > −1), c = p = 1, b = γ, ρ = 1 − β (0 < β ≤ 1)

and η = 1−α(0 ≤ α < 1) in Theorem 10 and Theorem 11, respectively, we get

the results obtained by Murugusundaramoorthy and Srivastava [16, Theorem

3 and Theorem 4].

(ii) Taking a = p+ 1, c = p+ 1− λ (0 ≤ λ ≤ 1), ρ = 1− β (0 < β ≤ 1) and

η = p−α (0 ≤ α < p) in Theorem 10 and Theorem 11, respectively, we get the

results due to Aouf [3, Theorem 3 and Theorem 4].

5. Subordination results

We now prove:

Theorem 13. If a ≥ c > 0, f ∈ ˜Sb
p,n(a, c, ρ), g ∈ C and

ε =
(n+ (p− ρ)|b|)(a)n

2{(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n}
,

then

(5.1) [ε z1−pf(z)] ⋆ g(z) ≺ g(z) (z ∈ U).

Moreover,

(5.2) Re

(

f(z)

zp−1

)

> − 1

2 ε
(z ∈ U).

If p and n are odd, then the constant factor ε in (5.1) and (5.2) cannot be

replaced by a larger number.

Proof. Let the function f be given by (1.9) and g(z) = z +
∑∞

k=2
ckz

k ∈ C.
Then

{ε z1−pf(z)} ⋆ g(z) =
∞
∑

k=1

bkck z
k (z ∈ U),
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where

bk =











ε, if k = 1,

0, if 2 ≤ k ≤ n,

−ε ap+k−1, if k ≥ n+ 1.

Thus, by Definition 3, the subordination result (5.1) holds true, if {bk}∞k=1
is

the subordinating factor sequence. Since

(k + (p− ρ)|b|)(a)k
(c)k

≥ (n+ (p− ρ)|b|)(a)n
(c)n

> 0 (k ≥ n),

we have for |z| = r < 1,

Re

{

1 + 2ε z − 2ε
∑

k=n

bk+1z
k+1

}

= Re

{

1 + 2ε z − 1

[(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n]

∞
∑

k=n

[(n+ (p− ρ)|b|)(c)n]ap+kz
k+1

}

≥ 1− (n+ (p− ρ)|b|)(a)n r

[(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n]

− (p− ρ)|b|(c)n r

[(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n]

∞
∑

k=n

(k + (p− ρ)|b|)(a)k
(p− ρ)|b|(c)k

ap+k.

Thus, by using Lemma 2, we deduce that

Re

{

1 + 2

∞
∑

k=0

bkz
k

}

= 1− (n+ (p− ρ)|b|)(a)n r

[(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n]
− (p− ρ)|b|(c)n r

[(n+ (p− ρ)|b|)(a)n + (p− ρ)|b|(c)n]
= 1− r > 0.

This proves the subordination result (5.1).

Letting g(z) = z/(1− z) (z ∈ U) in (5.1), we easily get the result (5.2), and

considering the function

f(z) = zp − (p− ρ)|b|(c)n
(n+ (p− ρ)|b|)(a)n

zp+n (a ≥ c > 0; z ∈ U),

it is easily seen that f ∈ ˜Sb
p,n(a, c, ρ) and if p and n are odd, then

[z1−pf(z)]z=−1 = − 1

2ε

so that the constant factor ε cannot be replaced by a larger number. �

Setting a = c and b = 1 in Theorem 13, we obtain:
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Corollary 3. If f ∈ ˜Sb
p,n(ρ), g ∈ C and

ε =
n+ (p− ρ)

2{n+ 2(p− ρ)} ,

then

[ε z1−pf(z)] ⋆ g(z) ≺ g(z) (z ∈ U).

Moreover,

Re

(

f(z)

zp−1

)

> − 1

2 ε
(z ∈ U).

If p and n are odd, then the constant factor ε cannot be replaced by a larger

number.

The proof of the following theorem is similar to that of Theorem 13, and we

omit the details.

Theorem 14. If a ≥ c > 0, f ∈ ˜Rb
p,n(a, c, µ, ρ), g ∈ C and

σ =
(p+ µn)(a)n

2{(p+ µn)(a)n + (p− ρ)|b|(c)n}
,

then

(5.3) {σ z1−pf(z)} ⋆ g(z) ≺ g(z) (z ∈ U).

Moreover,

(5.4) Re

(

f(z)

zp−1

)

> − 1

2 σ
(z ∈ U).

If p and n are odd, then the constant factor σ in (5.3) or (5.4) cannot be replaced

by a larger number.

Remark 5. By suitably specializing the various parameters involved, we can

derive the results (for example inclusion relations and neighborhood proper-

ties) of this paper for many relatively more familiar function classes (see also

Example 1, Example 2, Remark 1 and Remark 2).
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