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STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP

ALGEBRAS OVER FINITE FIELDS

Neha Makhijani, Rajendra Kumar Sharma, and J. B. Srivastava

Abstract. In continuation to the investigation initiated by Ferraz, Goo-
daire and Milies in [4], we provide an explicit description for the Wed-
derburn decomposition of finite semisimple group algebras of the class of
finite groups G, such that G/Z(G) ∼= C2 × C2, where Z(G) denotes the
center of G.

1. Introduction

In this paper, Fq denotes a finite field with q = pn elements and G is a

finite group such that Fq[G] is semisimple. The group algebra Fq[G] and its

Wedderburn decomposition are not only of interest in pure algebra, they also

have applications in coding theory. Cyclic codes can be realized as ideals of

group algebras over cyclic groups [8] and many other important codes appear

as ideals of noncyclic group algebras [2, 8, 9]. With the concrete realization of

the Wedderburn decomposition of Fq[G], it is straightforward to produce all

the ideals of Fq[G].

It is known from [6, Theorem 1.2] that any group G, such that G/Z(G) ∼=
C2 × C2, is a direct product of an indecomposable group (with this property)

and an abelian group. Since the structure of a semisimple abelian group alge-

bra follows from the well known theorem due to Perlis and Walker [7, Theo-

rem 3.5.4], we focus on the computation of Wedderburn decomposition of finite

semisimple group algebras of indecomposable groups with this property. In

fact there are five isomorphism classes of such groups [5, Section 3] and Table

1 gives their presentation. In [4], the structure of semi simple group algebras

of these groups was determined over rationals and over those finite fields for

which their Wedderburn decomposition has the least number of components.

In [1], Bakshi-Gupta-Passi studied the problem of computing the primitive cen-

tral idempotents and the Wedderburn decomposition of finite semisimple group

algebras of metabelian groups using the concept of strong Shoda pairs and con-

sequently obtained an explicit description of the primitive central idempotents
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and the Wedderburn decomposition of finite semisimple group algebra of the

groups G1 and G2.

By applying the theory of Ferraz, developed in [3], we obtain a general

expression for the decomposition of finite semisimple group algebras of groups

in Table 1.

We start by establishing the basic notation. The ring of integers modulo u is

denoted by Zu, the multiplicative order of v ∈ U(Zu) is denoted by ordu(v) and

for any positive integer l, (l, u) denotes the g.c.d. of l and u. If G is any finite

group, then the order of g ∈ G is denoted by o(g), [g] denotes the conjugacy

class of g in G and γg denotes the class sum of g. The following notation is

also used:

Cn cyclic group of order n

Rm external direct sum of m copies of the ring R

M(n,K) algebra of all n× n matrices over the field K

Table 1. Finite indecomposable groups G with G
Z(G)

∼= C2 × C2

G Presentation

G1 〈 x, y, t | x2, y2, t2
m

, t central , x−1y−1xy = t2
m−1

〉

G2 〈 x, y, t | x2
= y2

= t, t2
m

, t central , x−1y−1xy = t2
m−1

〉

G3 〈 x, y, t1, t2 | x2, y2
= t2, t2

m1

1 , t2
m2

2 ,

t1, t2 central , x−1y−1xy = t2
m1−1

1 〉

G4 〈 x, y, t1, t2 | x2
= t1, y2

= t2, t2
m1

1 , t2
m2

2 ,

t1, t2 central , x−1y−1xy = t2
m1−1

1 〉

G5 〈 x, y, t1, t2, t3 | x2
= t2, y2

= t3, t2
m1

1 , t2
m2

2 , t2
m3

3 ,

t1, t2, t3 central , x−1y−1xy = t2
m1−1

1 〉

2. Preliminaries

Let K be a field of characteristic p ≥ 0 and G be a finite group.

Definition 2.1. An element g ∈ G is said to be p-regular if p = 0 or p > 0

and (p, o(g)) = 1.

Let s be the L.C.M. of the orders of the p-regular elements of G, ξ be a

primitive sth root of unity over K and TG,K denote the multiplicative group

consisting of those integers t, taken modulo s, for which ξ 7→ ξt defines an

automorphism of K(ξ) over K.

Observation 2.2. TG,Fq
= {1, q, . . . , qc−1} mod s, where c = ords(q).

Definition 2.3. The cyclotomic K-class of γg is defined to be the set

S(γg) = {γgt | t ∈ TG,K}.
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Proposition 2.4 ([3, Proposition 1.2]). The number of simple components of

K[G]/J(K[G]) is equal to the number of cyclotomic K-classes in G.

Theorem 2.5 ([3, Theorem 1.3]). Suppose that Gal(K(ξ) : K) is cyclic. Let

t′ be the number of cyclotomic K-classes in G. If K1, . . . ,Kt′ are the simple

components of Z(K[G]/J(K[G])) and S1, . . . , St′ are the cyclotomic K-classes

of G, then with a suitable re-ordering of indices, |Si| = [Ki : K].

If F is a finite field, Gal(F (ξ) : F ) is cyclic showing that Theorem 2.5 is

applicable to the group algebra F [G].

In what follows, q = pn, p > 2.

3. Wedderburn decomposition of Fq[G1] and Fq[G2]

Consider the presentation of G1 as discussed in Table 1:

〈x, y, t | x2, y2, t2
m

, t central, x−1y−1xy = t2
m−1〉.

The elements of G1 can be written uniquely as

tixjyk, 1 ≤ i ≤ 2m, 0 ≤ j ≤ 1, 0 ≤ k ≤ 1.

It is important to note that any group G in this paper has a two-element

commutator subgroup G′ generated by a central element h of order 2 and so

conjugacy classes of a noncentral element w is of the form {w, hw}.
The following are the distinct conjugacy classes of G1:

(1) [ti] = {ti}, 1 ≤ i ≤ 2m,

(2) [tix] = {tix, t2
m−1+ix}, 1 ≤ i ≤ 2m−1,

(3) [tiy] = {tiy, t2
m−1+iy}, 1 ≤ i ≤ 2m−1,

(4) [tixy] = {tixy, t2
m−1+ixy}, 1 ≤ i ≤ 2m−1.

Theorem 3.1. If m ≥ 2, then

Fq[G1] ∼= F
4
q ⊕

m−1
⊕
k=1

F
2k+1/dk

qdk
⊕ M

(

2,Fqd

)2m−1/d
,

where dk = ord2k(q) and d = dm.

Proof. Since G′
1 = 〈t2m−1〉,

G1/G
′
1
∼= 〈x, y, t | x2, y2, t2

m−1

, t central, x−1y−1xy = t2
m−1〉

∼= 〈x, y, t | x2, y2, t2
m−1

, t central, xy = yx〉
∼= C2m−1 × C2 × C2.

Thus

Fq[G1] ∼= Fq[G1/G
′
1] ⊕ ∆(G1, G

′
1)

∼= Fq[C2m−1 × C2 × C2] ⊕
(

eqm⊕
i=1

M (ni, Fi)

)
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∼= Fq[C2m−1 ]4 ⊕
(

eqm⊕
i=1

M (ni, Fi)

)

∼= F
4
q ⊕

(

m−1
⊕
i=1

F
2i+1/di

qdi

)

⊕
(

eqm⊕
i=1

M (ni, Fi)

)

(3.1)

for some finite field extensions Fi of Fq, ni ≥ 2 and eqm ≥ 1.

It is easy to see that Fqd is a splitting field of G1. That is

Fqd [G1] ∼= F
2m+1

qd ⊕
(

2m−1

⊕
j=1

M
(

mj ,Fqd

)

)

for some mj ≥ 2.

But 2m+1 + 4× 2m−1 = 2m+2. As a result mj = 2 ∀ j.

Notice that Fqd [G1] ∼= Fqd ⊗Fq
Fq[G1]. Therefore by the uniqueness of Wed-

derburn decomposition, ni = 2 ∀ i.

For each k, 1 ≤ k ≤ m− 1, let

Ak
m−1 = {i | 1 ≤ i ≤ 2m−1, (i, 2m−1) = 2m−k−1}.

If i ∈ Ak
m−1 and s1, s2 ∈ TG,Fq

, then

[(tixy)s1 ] = [(tixy)s2 ]

⇔ is1 ≡ is2 or is2 + 2m−1 mod 2m

⇔ is1 ≡ is2 mod 2m−1

⇔ s1 ≡ s2 mod 2k

showing that there are 2k−1/dk distinct cyclotomic Fq classes of the form

S(γtixy), i ∈ Ak
m−1 in G1, each of size dk.

Proceeding in a similar way, the remaining cyclotomic Fq-classes can be

determined. Therefore Proposition 2.4 and Theorem 2.5 yield

Z(Fq[G1]) ∼=
(

Fq ⊕
m
⊕
k=1

F
ϕ(2k)/dk

qdk

)

⊕
(

Fq ⊕
m−1
⊕
k=1

F
ϕ(2k)/dk

qdk

)3

∼= F
4
q ⊕

m−1
⊕
k=1

F
2k+1/dk

qdk
⊕ F

2m−1/d

qd
(3.2)

and using equations (3.1) and (3.2), we obtain

Fq[G1] ∼= F
4
q ⊕

m−1
⊕
k=1

F
2k+1/dk

qdk
⊕ M

(

2,Fqd

)2m−1/d
.

�

Observe that

G2 = 〈x, y, t | x2 = y2 = t, t2
m

, t central, x−1y−1xy = t2
m−1〉

∼= 〈x, y | x2 = y2, y2
m+1

, x−1y−1xy = y2
m〉.

With this presentation in hand, we observe that the following are the distinct

conjugacy classes of G2:

{yi, y2
m+i} ∀ i, 1 ≤ i < 2m, (i, 2) = 1;

{y2i} ∀ i, 1 ≤ i ≤ 2m;
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{xyi, xy2
m+i} ∀ i, 1 ≤ i ≤ 2m;

Theorem 3.2. If m ≥ 2, then

Fq[G2] ∼= F
2
q ⊕

(

⊕m
i=1 F

2i/di

qdi

)

⊕ M(2,Fqd)
2m−1/d,

where dk = ord2k(q) and d = dm.

Proof. Let d′ be the multiplicative order of q modulo 2m+1 and s1, s2 be

distinct elements in T = TG2,Fq
= {1, q, . . . , qd′−1} mod 2m+1.

If i ∈ B = {j | 1 ≤ j < 2m, (j, 2) = 1}, then
[yis1 ] = [yis2 ]

⇔ is1 ≡ 2m + is2 mod 2m+1

⇔ s1 ≡ 2m + s2 mod 2m+1

⇔ s1 ≡ s2 mod 2m.

Thus there are 2m−1/d distinct cyclotomic Fq classes in G2 of the type S(γyi),

when i ∈ B, each of size d.

We shall now use the following presentation of the cyclic group C2m to

explore the remaining cyclotomic Fq classes in G2

〈z | z2m〉.
For any i ∈ B1 = {j | 1 ≤ j ≤ 2m},

[y2is1 ] = [y2is2 ]

⇔ 2is1 ≡ 2is2 mod 2m+1

⇔ is1 ≡ is2 mod 2m

⇔ [zis1 ] ≡ [zis2 ].

Thus

(1) |S(γy2i)| = |S(γzi) | ∀ i ∈ B1,

(2) |{S(γy2i)|i ∈ B1}| = |{S(γzi) | i ∈ B1}|.
We prove an analogous behavior for the cyclotomic Fq classes of the type

S(γxyi), i ∈ B1.

Notice that (xy)2 = x(yx)y = y2
m+4.

If s ∈ T , then s = 2l + 1 for some l ≥ 0 and

(xy)s = (xy)2l+1

= ((xy)2)l(xy)

= (y2
m+4)lxy

= xy2
ml+4l+1

= xy(2
m−1+2)s−2m−1−1.
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Hence

(xyi)s =

{

xy(2
m−1+i+1)s−2m−1−1 if i is odd

xy(i+1)s−1 if i is even

and

[(xyi)s] =

{

{ xy(2
m−1+i+1)s−2m−1−1, xy(2

m−1+i+1)s+2m−1−1} if i is odd

{ xy(i+1)s−1, xy2
m+(i+1)s−1} if i is even.

Then

[(xyi)s1 ] = [(xyi)s2 ]

⇔ (i+ 1)s1 ≡ (i+ 1)s2 mod 2m

and by a suitable reordering, we observe that the number (and size) of distinct

cyclotomic Fq classes of the type S(γxyi), i ∈ B1 in G2 is same as the number

(and size) of distinct cyclotomic Fq classes in C2m .

Since Fq[G/G′] ∼= Fq[C2m ]2, therefore working parallel to the proof of The-

orem 3.1, the result follows. �

4. The group algebras Fq[G3] and Fq[G4]

The group G3 can also be presented by

〈x, y, t | x2, t2
m1

, y2
m2+1

, t central, x−1y−1xy = t2
m1−1〉.

We trifurcate the distinct conjugacy classes of G3 obtained with respect to this

presentation as follows:

{tjyi, t2
m1−1+jyi }, 1 ≤ i ≤ 2m2+1, (i, 2) = 1 and 1 ≤ j ≤ 2m1−1;

{tjyix, t2
m1−1+jyix }, 1 ≤ i ≤ 2m2+1, 1 ≤ j ≤ 2m1−1;

{tjy2i }; 1 ≤ i ≤ 2m2 , 1 ≤ j ≤ 2m1 ;

We now obtain an expression for decomposition of the semisimple algebra

Fq[C2a × C2b ].

Lemma 4.1. Let G = C2a × C2b . Then

Fq[G] ∼= Fq ⊕
a
⊕

m=0

b
⊕

n=0
m+n>0

F
e(m,n)

qd(m,n) ,

where d(m,n) = ord2max(m,n)(q) and e(m,n) =
ϕ(2m) ϕ(2n)

d(m,n) .

Proof. Let C2a = 〈c〉 and C2b = 〈d〉 and for any m,n; 0 ≤ m ≤ a, 0 ≤ n ≤ b,

Am = {ci | (i, 2a) = 2a−m},
Bn = {di | (i, 2b) = 2b−n}.

Suppose that m+ n > 0.

If (am, bn) ∈ Am ×Bn and s1, s2 ∈ TG,Fq
, then

(am, bn)
s1 = (am, bn)

s2
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⇔ s1 ≡ s2 mod 2max(m,n).

Thus there are e(m,n) distinct Fq-cyclotomic classes of the type S(γ(am,bn)) in

G each of size d(m,n); (am, bn) ∈ Am ×Bn.

Evidently S(γ(1,1)) = {γ(1,1)}. Therefore

Fq[C2a × C2b ]
∼= Fq ⊕

a
⊕

m=0

b
⊕

n=0
m+n>0

F
e(m,n)

qd(m,n) .

�

Theorem 4.2. For any m1, m2 ≥ 3

Z(Fq[G3]) ∼=
m2⊕
n=0

F
e(m1,n)

qd(m1,n) ⊕ Fq[C2 × C2m1−1 × C2m2+1 ],

where d(l, k) = ord2max(l,k)(q) and e(l, k) =
ϕ(2l)ϕ(2k)

d(l,k) . Moreover

Fq[G3] ∼= F
2
q ⊕

m1−1
⊕

m=0

m2+1
⊕

n=0
m+n>0

F
2e(m,n)

qd(m,n) ⊕
m2⊕
n=0

M(2,Fqd(m1,n)) e(m1,n).

Proof. Once the number of distinct cyclotomic Fq classes in G3 and their car-

dinalities are known, the proof follows from Theorem 2.5. Therefore we aim at

finding the same.

As seen earlier, TG3,Fq
= {1, q, . . . , qd−1} mod 2max(m1,m2+1), where d =

d(m1,m2 + 1).

For any m, n; 0 ≤ m ≤ m1 − 1, 0 ≤ n ≤ m2 + 1, let

A′
m = {j | 1 ≤ j ≤ 2m1−1, (j, 2m1−1) = 2m1−m−1},

B′
n = {i | 1 ≤ i ≤ 2m2+1, (i, 2m2+1) = 2m2−n+1}.

Let s1, s2 be two distinct elements of TG3,Fq
. Consider the following:

(1) For any j ∈ A′
m and i ∈ B′

m2+1,

[(tjyi)s1 ] = [(tjyi)s2 ]

⇔ is1 ≡ is2 mod 2m2+1 and

(

js1 ≡ js2 mod 2m1 or

js1 ≡ 2m1−1 + js2 mod 2m1

)

⇔ s1 ≡ s2 mod 2max(m,m2+1).

That is, there are e(m,m2+1) cyclotomic Fq classes of the form S(γtjyi)

and cardinality d(m,m2 + 1), j ∈ A′
m and i ∈ B′

m2+1.

(2) Note that

(yx)2k+1 = [(yx)2]kyx

= (y2t2
m1−1

)kyx

= y2k+1t2
m1−1kx

so that if i is odd and s ∈ TG3,Fq
, then (yix)s = t2

m1−2(s−1)yisx.
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The following is now obvious:

[(tjyix)s] =

{

{ tjsyisx, tjs+2m1−1

yisx } if i is even

{ tjs+2m1−2(s−1)yisx, tjs+2m1−2(s+1)yisx } if i is odd.

For any j ∈ A′
m, i ∈ B′

n and m+ n > 0,

[(tjyix)s1 ] = [(tjyix)s2 ]

⇔ js1 ≡ js2 mod 2m1−1 and is1 ≡ is2 mod 2m2+1

⇔ s1 ≡ s2 mod 2max(m,n)

and thus there are e(m,n) cyclotomic Fq classes of the form S(γtjyix)

and size d(m,n), j ∈ A′
m, i ∈ B′

n and m+ n > 0.

(3) For any m, n; 0 ≤ m ≤ m1, 0 ≤ n ≤ m2, if

A′′
m = {j | 1 ≤ j ≤ 2m1 , ( j, 2m1) = 2m1−m} and

B′′
n = {i | 1 ≤ i ≤ 2m2 , ( i, 2m2) = 2m2−n},

then proceeding in a similar way, we find that there are e(m,n) cyclo-

tomic Fq classes of the form S(γtjy2i), j ∈ A′′
m, i ∈ B′′

n and m+ n > 0,

each of them having d(m,n) elements.

Thus using Theorem 2.5 and Lemma 4.1, we conclude that

Z(Fq[G3]) ∼=
m1−1
⊕

m=0
F
e(m,m2+1)

qd(m,m2+1) ⊕ Fq ⊕
m1−1
⊕

m=0

m2+1
⊕

n=0
m+n>0

F
e(m,n)

qd(m,n)

⊕ Fq ⊕
m1⊕
m=0

m2⊕
n=0

m+n>0

F
e(m,n)

qd(m,n)

∼=
m2⊕
n=0

F
e(m1,n)

qd(m1,n) ⊕ Fq[C2 × C2m1−1 × C2m2+1 ]

and the rest follows. �

The following is an alternate presentation of G4:

〈x, y | x2m1+1

, y2
m2+1

, x−1y−1xy = x2m1 〉.

The analysis in G4 is similar to that in G3. So we state the decomposition of

Fq[G4] without proof:

Theorem 4.3. For any m1, m2 ≥ 3

Fq[G4] ∼= Fq ⊕
m1⊕
m=0

m2+1
⊕

n=0
m+n>0

F
e(m,n)

qd(m,n) ⊕
m2⊕
n=0

M(2,Fqd(m1,n)) e(m1,n),

where d(l, k) = ord2max(l,k)(q) and e(l, k) =
ϕ(2l)ϕ(2k)

d(l,k) .
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5. The group algebra Fq[G5]

As previously, we begin with a lemma that enables us to determine the

decomposition of Fq[G5] that is much in spirit of Theorem 4.2.

Lemma 5.1. Let G = C2a × C2b × C2c . Then

Fq[G] ∼= Fq ⊕
a
⊕

m=0

b
⊕

n=0

c
⊕
l=0

m+n+l>0

F
e(m,n,l)

qd(m,n,l) ,

where d(m,n, l) = ord2max(m,n,l)(q) and e(m,n, l) =
ϕ(2m) ϕ(2n) ϕ(2l)

d(m,n,l) .

Observe that the following is a presentation of G5:

〈x, y, t | t2m1
, x2m2+1

, y2
m3+1, t central, x−1y−1xy = t2

m1−1〉.
Theorem 5.2. For any m1,m2,m3 ≥ 3,

Fq[G5] ∼= Fq ⊕
m1−1
⊕

m=0

m2+1
⊕

n=0

m3+1
⊕
l=0

m+n+l>0

F
e(m,n,l)

qd(m,n,l) ⊕
m2⊕
n=0

m3⊕
l=0

M(2,Fqd(m1,n,l)) e(m1,n,l),

where d(m,n, l) = ord2max(m,n,l)(q) and e(m,n, l) =
ϕ(2m) ϕ(2n) ϕ(2l)

d(m,n,l) .

6. Validation of results in [4]

It is known that U(Z2n) ∼= C2 ×C2n−2 . However the multiplicative order of

an arbitrary element q ∈ U(Z2n) is not known.

Theorem 6.1. Let q ∈ Z such that

q ≡ 1 mod 2m and q 6≡ 1 mod 2m+1

for some m ≥ 3.

Then

q2
r ≡ 1 mod 2m+r and q2

r 6≡ 1 mod 2m+r+1 ∀ r ≥ 0.

That is, ord2m+r (q) = 2r ∀ r ≥ 0.

Theorem 6.2. Let q ∈ U(Z2n), n ≥ 3. If d = ord2n(q) and d2 = ord2n(q
2),

then

d2 =

{

d if d = 1

d/2 if d > 1.

Moreover,

(1) If q ≡ 1 mod 8, then

d =

{

1 if n ≤ m

2n−m if n > m

m being the largest integer such that q ≡ 1 mod 2m.

(2) If q ≡ 3 or 5 mod 8, then d = 2n−2.

(3) If q ≡ 7 mod 8, then d = 2n−m+1, m ≤ n being the largest integer such

that q2 ≡ 1 mod 2m.
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For any group G in Table 1, let C(q,G) and N(q,G) be the number of com-

mutative and non-commutative components in the Wedderburn decomposition

of Fq[G] respectively. A lower bound for C(q,G) and N(q,G) has been ob-

tained in [4] and it is proved that the minimal number is achieved when q ≡ 3

mod 8. The same can be derived using Theorem 6.2 and the decompositions

obtained in Sections 3 through 5.
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